Iacobas Dumitru A, Iacobas Sanda, Spray David C
Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA.
Prog Biophys Mol Biol. 2007 May-Jun;94(1-2):169-85. doi: 10.1016/j.pbiomolbio.2007.03.015. Epub 2007 Apr 3.
Microarray experiments have generally focused on magnitude of gene expression changes in pathological conditions, thereby using the method as a high throughput screen to identify candidate marker genes and/or to validate phenotypic differences. We have used novel strategies to extract additional information from array studies, including expression variability and coordination, from which organizational principles of transcriptomes are emerging. We have reported that the expression level, variability and coordination of numerous genes are regulated in brains of connexin43 null (Gja1(-/-)) mouse with respect to wildtype. Moreover, expression coordination with Gja1 in wildtype largely predicted the expression regulation in Gja1(-/-) tissues. We now report a remarkable overlap between regulations in Gja1(-/-) and connexin32 null (Gjb1(-/-)) brains, and that both differ markedly from those in connexin36 null (Gja9(-/-)) brain. Since in brain these three connexins are expressed in different cell types (Cx43 in astrocytes, ependymal and vascular cells, Gjb1 in oligodendrocytes, and Cx36 in neurons and microglia), and because astrocytes and oligodendrocytes (and possibly neurons and microglia) may form syncytia coupled by gap junction channels, these observations suggest the existence of distinct connexin-dependent panglial and neuronal transcriptomic networks. Such networks, where linkage partners are rearranged and strengths modified in brains of knockouts, may explain downstream and parallel "ripples" of phenotypic change resulting from single gene manipulations as illustrated by alterations in transcription factor networks resulting from deletion of Gja1 or Gjb1. The transcription factors also formed network hubs with genes from other functional categories, thus allowing regulation of one functional pathway through manipulation of another.
微阵列实验通常聚焦于病理条件下基因表达变化的幅度,从而将该方法用作高通量筛选,以识别候选标记基因和/或验证表型差异。我们采用了新颖的策略从阵列研究中提取额外信息,包括表达变异性和协调性,转录组的组织原则正由此显现。我们已报道,与野生型相比,连接蛋白43基因敲除(Gja1(-/-))小鼠大脑中众多基因的表达水平、变异性和协调性受到调控。此外,野生型中与Gja1的表达协调性在很大程度上预测了Gja1(-/-)组织中的表达调控。我们现在报告,Gja1(-/-)和连接蛋白32基因敲除(Gjb1(-/-))大脑中的调控存在显著重叠,且两者与连接蛋白36基因敲除(Gja9(-/-))大脑中的调控明显不同。由于在大脑中这三种连接蛋白在不同细胞类型中表达(星形胶质细胞、室管膜细胞和血管细胞中表达Cx43,少突胶质细胞中表达Gjb1,神经元和小胶质细胞中表达Cx36),并且因为星形胶质细胞和少突胶质细胞(可能还有神经元和小胶质细胞)可能通过间隙连接通道形成合体细胞,这些观察结果表明存在独特的依赖连接蛋白的全神经胶质细胞和神经元转录组网络。在基因敲除小鼠的大脑中,这种网络中连接伙伴重新排列且强度改变,这可能解释了单基因操作导致的表型变化的下游和并行“涟漪”,如Gja1或Gjb1缺失导致的转录因子网络改变所示。转录因子还与其他功能类别的基因形成网络枢纽,从而允许通过操纵另一条功能途径来调控一条功能途径。