Elsworth John D, Jentsch J David, Morrow Bret A, Redmond D Eugene, Roth Robert H
Neuropsychopharmacology Research Unit, Departments of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.
Neuropsychopharmacology. 2008 Feb;33(3):491-6. doi: 10.1038/sj.npp.1301448. Epub 2007 May 16.
The mechanism responsible for the therapeutic effects of the prototypical atypical antipsychotic drug, clozapine, is still not understood; however, there is persuasive evidence from in vivo studies in normal rodents and primates that the ability to elevate dopamine neurotransmission preferentially in the prefrontal cortex is a key component to the beneficial effects of clozapine in schizophrenia. Theoretically, such an effect of clozapine would counteract the deficient dopaminergic innervation of the prefrontal cortex that appears to be part of the pathophysiology of schizophrenia. We have previously shown that following repeated, intermittent administrations of phencyclidine to monkeys there is lowered prefrontal cortical dopamine transmission and impairment of cognitive performance that is dependent on the prefrontal cortex; these biochemical and behavioral changes therefore model certain aspects of schizophrenia. We now investigate the effects of clozapine on the dopamine projections to prefrontal cortex, nucleus accumbens, and striatum in control monkeys and in those withdrawn from repeated phencyclidine treatment, using a dose regimen of clozapine that ameliorates the cognitive deficits described in the primate phencyclidine (PCP) model. In normal monkeys, clozapine elevated dopamine turnover in all prefrontal cortical, but not subcortical, regions analyzed. In the primate PCP model, clozapine normalized dopamine (DA) turnover in the dorsolateral prefrontal cortex, prelimbic cortex, and cingulate cortex. Thus, the present data support the hypothesis that the therapeutic effects of clozapine in this primate model and perhaps in schizophrenia may be related at least in part to the restoration of DA tone in the prefrontal cortex.
典型非典型抗精神病药物氯氮平的治疗作用机制仍未完全明了;然而,来自正常啮齿动物和灵长类动物体内研究的有说服力的证据表明,优先提高前额叶皮质多巴胺神经传递的能力是氯氮平治疗精神分裂症有益作用的关键组成部分。从理论上讲,氯氮平的这种作用将抵消前额叶皮质多巴胺能神经支配不足,而这种不足似乎是精神分裂症病理生理学的一部分。我们先前已经表明,给猴子反复间歇性给予苯环己哌啶后,前额叶皮质多巴胺传递降低,且认知能力受损,这种认知能力受损依赖于前额叶皮质;因此,这些生化和行为变化模拟了精神分裂症的某些方面。我们现在使用能改善灵长类动物苯环己哌啶(PCP)模型中所描述的认知缺陷的氯氮平给药方案,研究氯氮平对对照猴子以及从反复苯环己哌啶治疗中撤药的猴子的前额叶皮质、伏隔核和纹状体多巴胺投射的影响。在正常猴子中,氯氮平提高了所有分析的前额叶皮质区域而非皮质下区域的多巴胺周转率。在灵长类动物PCP模型中,氯氮平使背外侧前额叶皮质、前边缘皮质和扣带回皮质的多巴胺(DA)周转率恢复正常。因此,目前的数据支持这样一种假说,即氯氮平在该灵长类动物模型中以及可能在精神分裂症中的治疗作用可能至少部分与前额叶皮质中DA张力的恢复有关。