Suppr超能文献

一种表达基于单核苷酸多态性(SNP)的遗传异质性Psi的新方法,及其用于测量多个SNP的连锁不平衡D(g)并估计单倍型频率绝对最大值的用途。

A novel method to express SNP-based genetic heterogeneity, Psi, and its use to measure linkage disequilibrium for multiple SNPs, D(g), and to estimate absolute maximum of haplotype frequency.

作者信息

Yamada Ryo, Matsuda Fumihiko

机构信息

Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

出版信息

Genet Epidemiol. 2007 Nov;31(7):709-26. doi: 10.1002/gepi.20235.

Abstract

Single nucleotide polymorphisms (SNPs) are important markers to investigate genetic heterogeneity of population and to perform linkage disequilibrium (LD) mapping. We propose a new method, Psi, to express frequency of 2(N(s)) haplotypes for N(s) di-allelic SNPs. Using the new expression of haplotype frequency, we propose a novel measure of LD, D(g), not only for SNP pairs but also for multiple markers. The values of D(g) for SNP pairs were revealed to be similar to values of conventional pairwise LD indices, D' and r(2), and it was revealed that D(g) quantitated components of LD that were not measured by conventional LD indices for SNP pairs. Also we propose a distinct method, D(g)-based absolute estimation, to infer the absolute maximum estimates of haplotype frequency. The result of the D(g)-based absolute estimation of haplotype frequency for SNP pairs were compared with the conventional expectation-maximization (EM) algorithm and reported that the new method gave better inference than the EM algorithm which converged infrequently to a local extreme.

摘要

单核苷酸多态性(SNPs)是研究群体遗传异质性和进行连锁不平衡(LD)图谱分析的重要标记。我们提出了一种新方法Psi,用于表示N(s)个双等位基因SNP的2(N(s))种单倍型的频率。利用单倍型频率的新表达式,我们提出了一种新的LD度量指标D(g),它不仅适用于SNP对,也适用于多个标记。结果表明,SNP对的D(g)值与传统的成对LD指数D'和r(2)的值相似,并且发现D(g)能够量化传统LD指数未测量的SNP对LD成分。此外,我们还提出了一种独特的方法——基于D(g)的绝对估计法,用于推断单倍型频率的绝对最大估计值。将基于D(g)的SNP对单倍型频率绝对估计结果与传统的期望最大化(EM)算法进行比较,结果表明,新方法比EM算法能给出更好的推断,因为EM算法很少收敛到局部极值。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验