Wang Jie, Paszti Zoltan, Clarke Matthew L, Chen Xiaoyun, Chen Zhan
Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Phys Chem B. 2007 May 31;111(21):6088-95. doi: 10.1021/jp070383o. Epub 2007 May 19.
We demonstrate both theoretically and experimentally that the combination of vibrational spectroscopic techniques on samples can be used to deduce more detailed structural information of interfacial proteins and peptides. Such an approach can be used to elucidate structures of proteins or peptides at interfaces, such as at the solid/liquid interface or in cell membranes. We also discuss that the controlled perturbations may provide more measured parameters for structural studies on such proteins and peptides. In this paper, we will demonstrate that optical spectroscopic techniques such as polarized Fourier transform infrared spectroscopy (FTIR), sum frequency generation (SFG) vibrational spectroscopy, and higher order nonlinear vibrational spectroscopies can be used to deduce different and complementary structural information of molecules at interfaces (e.g., orientation information of certain functional groups and secondary structures of interfacial proteins). Also, we believe that controlled perturbations on samples, such as variation of sample temperature, application of electrical fields, and alternation of substrate roughness, can provide more detailed information regarding the interfacial structures of proteins and peptides. The development of nonlinear vibrational spectroscopies, such as SFG and four-wave mixing vibrational spectroscopy, to examine interfacial protein and peptide structures, and introduction of external perturbations on samples should be able to substantially advance our knowledge in understanding structures and thus functions of proteins and peptides at interfaces.
我们通过理论和实验证明,对样品使用振动光谱技术的组合可用于推断界面蛋白质和肽的更详细结构信息。这种方法可用于阐明界面处蛋白质或肽的结构,例如在固/液界面或细胞膜中。我们还讨论了可控扰动可为这类蛋白质和肽的结构研究提供更多测量参数。在本文中,我们将证明诸如偏振傅里叶变换红外光谱(FTIR)、和频产生(SFG)振动光谱以及高阶非线性振动光谱等光学光谱技术可用于推断界面处分子的不同且互补的结构信息(例如某些官能团的取向信息和界面蛋白质的二级结构)。此外,我们认为对样品的可控扰动,如样品温度变化、电场施加以及底物粗糙度改变,能够提供有关蛋白质和肽界面结构的更详细信息。非线性振动光谱技术的发展,如SFG和四波混频振动光谱,用于研究界面蛋白质和肽结构,以及对样品引入外部扰动,应该能够极大地推进我们对界面处蛋白质和肽的结构及功能的理解。