Malthouse J P G
UCD School of Biomolecular and Biomedical Science, Centre for Synthesis and Chemical Biology, UCD Conway Institute, University College Dublin, Dublin 4, Ireland.
Biochem Soc Trans. 2007 Jun;35(Pt 3):566-70. doi: 10.1042/BST0350566.
Catalysis by the serine proteinases proceeds via a tetrahedral intermediate whose oxyanion is stabilized by hydrogen-bonding in the oxyanion hole. There have been extensive (13)C-NMR studies of oxyanion and tetrahedral intermediate stabilization in trypsin, subtilisin and chymotrypsin using substrate-derived chloromethane inhibitors. One of the limitations of these inhibitors is that they irreversibly alkylate the active-site histidine residue which results in the oxyanion not being in the optimal position in the oxyanion hole. Substrate-derived glyoxal inhibitors are reversible inhibitors which, if they form tetrahedral adducts in the same way as substrates form tetrahedral intermediates, will overcome this limitation. Therefore we have synthesized (13)C-enriched substrate-derived glyoxal inhibitors which have allowed us to use (13)C-NMR and (1)H-NMR to determine how they interact with proteinases. It is hoped that these studies will help in the design of specific and highly potent warheads for serine proteinase inhibitors.
丝氨酸蛋白酶的催化作用通过一个四面体中间体进行,该中间体的氧负离子通过在氧负离子孔中的氢键作用得以稳定。利用底物衍生的氯甲烷抑制剂,已经对胰蛋白酶、枯草杆菌蛋白酶和胰凝乳蛋白酶中的氧负离子和四面体中间体的稳定作用进行了广泛的¹³C-NMR研究。这些抑制剂的局限性之一在于它们会不可逆地使活性位点组氨酸残基烷基化,这导致氧负离子不在氧负离子孔中的最佳位置。底物衍生的乙二醛抑制剂是可逆抑制剂,如果它们以与底物形成四面体中间体相同的方式形成四面体加合物,将克服这一局限性。因此,我们合成了富含¹³C 的底物衍生乙二醛抑制剂,这使我们能够利用¹³C-NMR和¹H-NMR来确定它们与蛋白酶的相互作用方式。希望这些研究将有助于设计用于丝氨酸蛋白酶抑制剂的特异性和高效弹头。