Suppr超能文献

生物标志物研究及其他复杂的推理问题:统计学注意事项。

Biomarker studies and other difficult inferential problems: statistical caveats.

作者信息

Berry Donald A

机构信息

The University of Texas, M. D. Anderson Cancer Center, Houston, TX 77030, USA.

出版信息

Semin Oncol. 2007 Apr;34(2 Suppl 3):S17-22. doi: 10.1053/j.seminoncol.2007.03.014.

Abstract

The inferential issues associated with biomarker studies are enormously complex. False-positive conclusions are rampant in the literature. It is wonderful to have many potential biomarkers in trying to explain the heterogeneity of cancer and outcomes of its treatment. But a large number of biomarkers give rise to statistical headaches. False-positives proliferate. A useful approach is to reduce many biomarkers into a single dimension, and to then attempt to confirm the prognostic or predictive value of the single-dimensional quantity. This is not a panacea for all statistical and scientific ailments, but it minimizes some of the problems. A related concern is subset analysis. I give a statistical argument that estrogen-receptor status is predictive of the benefits of chemotherapy in node-positive breast cancer.

摘要

生物标志物研究中涉及的推断问题极其复杂。文献中假阳性结论泛滥。在试图解释癌症的异质性及其治疗结果时能有许多潜在的生物标志物是很棒的。但大量的生物标志物引发了统计学上的难题。假阳性结果激增。一种有用的方法是将众多生物标志物归纳为一个单一维度,然后尝试确认这个单维量的预后或预测价值。这并非解决所有统计和科学问题的万灵药,但它能将一些问题最小化。一个相关的问题是亚组分析。我给出一个统计学观点,即雌激素受体状态可预测淋巴结阳性乳腺癌化疗的益处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验