Suppr超能文献

特征构建可改善中链酰基辅酶A脱氢酶缺乏症新生儿筛查中高维代谢数据的诊断标准。

Feature construction can improve diagnostic criteria for high-dimensional metabolic data in newborn screening for medium-chain acyl-CoA dehydrogenase deficiency.

作者信息

Ho Sirikit, Lukacs Zoltan, Hoffmann Georg F, Lindner Martin, Wetter Thomas

机构信息

Division of Metabolic Diseases, Department of General Pediatrics, University Children's Hospital, Heidelberg, Germany.

出版信息

Clin Chem. 2007 Jul;53(7):1330-7. doi: 10.1373/clinchem.2006.081802. Epub 2007 May 18.

Abstract

BACKGROUND

In newborn screening with tandem mass spectrometry, multiple intermediary metabolites are quantified in a single analytical run for the diagnosis of fatty-acid oxidation disorders, organic acidurias, and aminoacidurias. Published diagnostic criteria for these disorders normally incorporate a primary metabolic marker combined with secondary markers, often analyte ratios, for which the markers have been chosen to reflect metabolic pathway deviations.

METHODS

We applied a procedure to extract new markers and diagnostic criteria for newborn screening to the data of newborns with confirmed medium-chain acyl-CoA dehydrogenase deficiency (MCADD) and a control group from the newborn screening program, Heidelberg, Germany. We validated the results with external data of the screening center in Hamburg, Germany. We extracted new markers by performing a systematic search for analyte combinations (features) with high discriminatory performance for MCADD. To select feature thresholds, we applied automated procedures to separate controls and cases on the basis of the feature values. Finally, we built classifiers from these new markers to serve as diagnostic criteria in screening for MCADD.

RESULTS

On the basis of chi(2) scores, we identified approximately 800 of >628,000 new analyte combinations with superior discriminatory performance compared with the best published combinations. Classifiers built with the new features achieved diagnostic sensitivities and specificities approaching 100%.

CONCLUSION

Feature construction methods provide ways to disclose information hidden in the set of measured analytes. Other diagnostic tasks based on high-dimensional metabolic data might also profit from this approach.

摘要

背景

在串联质谱新生儿筛查中,单次分析运行可对多种中间代谢物进行定量,以诊断脂肪酸氧化障碍、有机酸尿症和氨基酸尿症。这些疾病已公布的诊断标准通常纳入一个主要代谢标志物并结合次要标志物,通常是分析物比值,选择这些标志物以反映代谢途径偏差。

方法

我们将一种提取新生儿筛查新标志物和诊断标准的程序应用于来自德国海德堡新生儿筛查项目的确诊中链酰基辅酶A脱氢酶缺乏症(MCADD)新生儿数据及一个对照组。我们用德国汉堡筛查中心的外部数据验证了结果。我们通过系统搜索对MCADD具有高鉴别性能的分析物组合(特征)来提取新标志物。为选择特征阈值,我们应用自动化程序根据特征值区分对照组和病例组。最后,我们基于这些新标志物构建分类器,用作MCADD筛查的诊断标准。

结果

基于卡方评分,我们在超过628,000种新分析物组合中识别出约800种,与已公布的最佳组合相比,其具有更优的鉴别性能。用新特征构建的分类器实现了接近100%的诊断敏感性和特异性。

结论

特征构建方法提供了揭示隐藏在测量分析物集中信息的途径。基于高维代谢数据的其他诊断任务也可能从这种方法中受益。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验