Voïtchovsky Kislon, Contera Sonia Antoranz, Ryan J F
Bionanotechnology Interdisciplinary Research Collaboration, Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom.
Biophys J. 2007 Sep 15;93(6):2024-37. doi: 10.1529/biophysj.106.101469. Epub 2007 May 18.
Bacteriorhodopsin (bR) is a haloarchaeal membrane protein that converts the energy of single photons into large structural changes to directionally pump protons across purple membrane. This is achieved by a complex combination of local dynamic interactions controlling bR biomechanics at the submolecular level, producing efficient amplification of the retinal photoisomerization. Using single molecule force spectroscopy at different salt concentrations, we show that tryptophan (Trp) residues use steric specific interactions to create a rigid scaffold in bR extracellular region and are responsible for the main unfolding barriers. This scaffold, which encloses the retinal, controls bR local mechanical properties and anchors the protein into the membrane. Furthermore, the stable Trp-based network allows ion binding to two specific sites on the extracellular loops (BC and FG), which are involved in proton release and lateral transport. In contrast, the cytoplasmic side of bR is mainly governed by relatively weak nonspecific electrostatic interactions that provide the flexibility necessary for large cytoplasmic structural rearrangements during the photocycle. The presence of an extracellular Trp-based network tightly enclosing the retinal seems common to most haloarchaeal rhodopsins, and could be relevant to their exceptional efficiency.
细菌视紫红质(bR)是一种嗜盐古菌膜蛋白,它将单个光子的能量转化为大规模结构变化,从而跨紫膜定向泵出质子。这是通过在亚分子水平控制bR生物力学的局部动态相互作用的复杂组合来实现的,从而产生视网膜光异构化的有效放大。在不同盐浓度下使用单分子力谱,我们表明色氨酸(Trp)残基利用空间特异性相互作用在bR细胞外区域创建一个刚性支架,并负责主要的解折叠屏障。这个包围视网膜的支架控制bR局部力学性质,并将蛋白质锚定在膜中。此外,稳定的基于Trp的网络允许离子结合到细胞外环(BC和FG)上的两个特定位点,这两个位点参与质子释放和横向运输。相比之下,bR的细胞质侧主要由相对较弱的非特异性静电相互作用控制,这些相互作用为光循环期间细胞质大规模结构重排提供了必要的灵活性。一个紧密包围视网膜的基于细胞外Trp的网络的存在似乎在大多数嗜盐古菌视紫红质中很常见,并且可能与其非凡的效率有关。