Suppr超能文献

酶催化反应模式的系统分析及微生物生物降解途径的预测。

Systematic analysis of enzyme-catalyzed reaction patterns and prediction of microbial biodegradation pathways.

作者信息

Oh Mina, Yamada Takuji, Hattori Masahiro, Goto Susumu, Kanehisa Minoru

机构信息

Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan.

出版信息

J Chem Inf Model. 2007 Jul-Aug;47(4):1702-12. doi: 10.1021/ci700006f. Epub 2007 May 22.

Abstract

The roles of chemical compounds in biological systems are now systematically analyzed by high-throughput experimental technologies. To automate the processing and interpretation of large-scale data it is necessary to develop bioinformatics methods to extract information from the chemical structures of these small molecules by considering the interactions and reactions involving proteins and other biological macromolecules. Here we focus on metabolic compounds and present a knowledge-based approach for understanding reactivity and metabolic fate in enzyme-catalyzed reactions in a given organism or group. We first constructed the KEGG RPAIR database containing chemical structure alignments and structure transformation patterns, called RDM patterns, for 7091 reactant pairs (substrate-product pairs) in 5734 known enzyme-catalyzed reactions. A total of 2205 RDM patterns were then categorized based on the KEGG PATHWAY database. The majority of RDM patterns were uniquely or preferentially found in specific classes of pathways, although some RDM patterns, such as those involving phosphorylation, were ubiquitous. The xenobiotics biodegradation pathways contained the most distinct RDM patterns, and we developed a scheme for predicting bacterial biodegradation pathways given chemical structures of, for example, environmental compounds.

摘要

目前,高通量实验技术正在系统地分析生物系统中化合物的作用。为了实现大规模数据处理与解读的自动化,有必要开发生物信息学方法,通过考虑涉及蛋白质和其他生物大分子的相互作用与反应,从这些小分子的化学结构中提取信息。在此,我们聚焦于代谢化合物,并提出一种基于知识的方法,以理解给定生物体或生物群体中酶催化反应的反应活性和代谢命运。我们首先构建了KEGG RPAIR数据库,该数据库包含5734个已知酶催化反应中7091个反应物对(底物 - 产物对)的化学结构比对和结构转化模式,即RDM模式。随后,基于KEGG PATHWAY数据库对总共2205个RDM模式进行了分类。尽管有些RDM模式,如涉及磷酸化的模式,是普遍存在的,但大多数RDM模式在特定类型的途径中是独特或优先发现的。异生物质生物降解途径包含最独特的RDM模式,我们开发了一种方案,可根据例如环境化合物的化学结构预测细菌生物降解途径。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验