Elliot David J, Lewis Benjamin C, Gillam Elizabeth M J, Birkett Donald J, Gross Annette S, Miners John O
Department of Clinical Pharmacology, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, Australia.
Br J Clin Pharmacol. 2007 Oct;64(4):450-7. doi: 10.1111/j.1365-2125.2007.02943.x. Epub 2007 May 22.
To identify the human cytochrome P450 (CYP) enzymes responsible for the formation of the 6beta-hydroxy (6beta-OHGz), 7beta-hydroxy (7beta-OHGz) and hydroxymethyl (MeOH-Gz) metabolites of gliclizide (Gz).
6beta-OHGz, 7beta-OHGz and MeOH-Gz formation by human liver microsomes and a panel of recombinant human P450s was measured using a high-performance liquid chromatography procedure, and the kinetics of metabolite formation was determined for each pathway. Effects of prototypic CYP enzyme selective inhibitors were characterized for each of the microsomal metabolic pathways.
Microsomes from six human livers converted Gz to its 6beta-OHGz, 7beta-OHGz, and MeOH-Gz metabolites, with respective mean (+/- SD) K(m) values of 461 +/- 139, 404 +/- 143 and 334 +/- 75 microm and mean V(max) values of 130 +/- 55, 82 +/- 31 and 268 +/- 115 pmol min(-1) mg(-1), respectively. V(max)/K(m) ratios for the microsomal reactions parallelled relative metabolite formation in vivo. Sulfaphenazole inhibited microsomal 6beta-OHGz, 7beta-OHGz and MeOH-Gz formation by 87, 83 and 64%, respectively, whereas S-mephenytoin caused significant inhibition (48%) of only MeOH-Gz formation. Recombinant CYP2C9, CYP2C18 and CYP2C19 catalysed all hydroxylation pathways, whereas CYP2C8 formed only 6beta-OHGz and 7beta-OHGz.
Taken together, the results indicate that CYP2C9 is the major contributor to Gz metabolic clearance, although CYP2C19 may also be involved in MeOH-Gz formation (the major metabolic pathway). Factors known to influence CYP2C9 activity will provide the main source of variability in Gz pharmacokinetics.
确定负责形成格列齐特(Gz)的6β-羟基(6β-OHGz)、7β-羟基(7β-OHGz)和羟甲基(MeOH-Gz)代谢物的人细胞色素P450(CYP)酶。
采用高效液相色谱法测定人肝微粒体和一组重组人P450s形成6β-OHGz、7β-OHGz和MeOH-Gz的情况,并确定各途径代谢物形成的动力学。对每种微粒体代谢途径进行了原型CYP酶选择性抑制剂的作用研究。
来自六个人肝脏的微粒体将Gz转化为其6β-OHGz、7β-OHGz和MeOH-Gz代谢物,各自的平均(±标准差)K(m)值分别为461±139、404±143和334±75微摩尔,平均V(max)值分别为130±55、82±31和268±115皮摩尔·分钟(-1)·毫克(-1)。微粒体反应的V(max)/K(m)比值与体内相对代谢物形成情况平行。磺胺苯吡唑分别抑制微粒体6β-OHGz、7β-OHGz和MeOH-Gz形成87%、83%和64%,而S-美芬妥英仅对MeOH-Gz形成有显著抑制作用(48%)。重组CYP2C9、CYP2C18和CYP2C19催化所有羟基化途径,而CYP2C8仅形成6β-OHGz和7β-OHGz。
综合来看,结果表明CYP2C9是Gz代谢清除的主要贡献者,尽管CYP2C19也可能参与MeOH-Gz的形成(主要代谢途径)。已知影响CYP2C9活性的因素将是Gz药代动力学变异性的主要来源。