Rockenbauer Antal, Clément Jean-Louis, Culcasi Marcel, Mercier Anne, Tordo Paul, Pietri Sylvia
Chemical Research Center, Institute of Structural Chemistry, H-1025 Budapest, Pusztaszeri út 59, Hungary.
J Phys Chem A. 2007 Jun 14;111(23):4950-7. doi: 10.1021/jp070679u. Epub 2007 May 23.
Experiments were performed to elucidate the origin of the superhyperfine structure and line width alternation (LWA) seen in the ESR spectrum of the major diastereoisomer (1) of DEPMPO-OOH, the remarkably persistent superoxide adduct of 5-(diethoxyphosphoryl)-5-methyl-1-pyrroline N-oxide (DEPMPO). Using selectively deuterated DEPMPO derivatives, we demonstrated that the superhyperfine pattern can be unambiguously attributed to long-range couplings. The recording in pyridine of highly resolved spectra in a wide temperature range, combined with two-dimensional simulation, allowed us to characterize an inverted LWA in 1 and revealed a uniform line broadening in the spectrum of the minor DEPMPO-OOH diastereoisomer (2), with both effects originating from a chemical exchange between conformers. When the individual spectra of 1 presenting LWA in the fast-exchange regime were simulated, four equally good fits were obtained and this ambiguity could be resolved by using a two-dimensional simulation technique. The thermodynamic and kinetic constants of this exchange were consistent with a rotation around the O-O bond. We propose that line broadening effects in 1 and 2 result from this O-O rotation concerted with the pseudo-rotation of the pyrrolidine ring.