Suppr超能文献

使用结合位点富集分析鉴定转录调节因子。

Identification of transcriptional regulators using binding site enrichment analysis.

作者信息

Kim Tae-Min, Jung Myeong Ho

机构信息

Division of Metabolic Disease, Center for Biomedical Science, National Institute of Health, Nokbun-dong 5, Eunpyung-gu, Seoul 122-701, South Korea.

出版信息

In Silico Biol. 2006;6(6):531-44.

Abstract

To understand the transcriptional regulatory network in eukaryotic cells, it is essential to identify functional cis-regulatory sequences that interact with trans-acting factors. A number of algorithms have been developed to predict common cis-regulatory elements for co-regulated genes with similar expression patterns. However, previous methods usually deal with disjoint gene groups partitioned or clustered by arbitrary cutoffs, which might cause information losses. To preclude the defining step of gene set, we adopted enrichment analysis and termed the method binding site enrichment analysis (BSEA). BSEA was first applied for publicly available ChIP-on-chip data of c-MYC, MAX and E2F transcription factors, identifying significant enrichment for signatures of corresponding factors and potential co-activators. Using time-scaled expression profiling of 3T3-L1 adipogenesis, we observed enrichment for signatures of known adipogenic factors such as C/EBPalpha, C/EBPbeta and PPARgamma, temporally coincident with previous reports. BSEA was also applied to tissue-specific expression profiles of human and mouse, identifying well-known tissue-specific transcription factors such as HNF-4 in liver and MEF-2 in heart along with other putative tissue-specific regulators. With extended versatility coping with various kinds of microarray dataset, BSEA can identify key regulators for global microarray data in which transcriptional regulation plays a major role. As a generalized method, BSEA would help to elucidate the transcriptional regulatory networks, the primary challenges in functional genomics.

摘要

为了理解真核细胞中的转录调控网络,识别与反式作用因子相互作用的功能性顺式调控序列至关重要。已经开发了许多算法来预测具有相似表达模式的共调控基因的常见顺式调控元件。然而,以前的方法通常处理由任意阈值划分或聚类的不相交基因组,这可能会导致信息丢失。为了排除基因集的定义步骤,我们采用了富集分析并将该方法称为结合位点富集分析(BSEA)。BSEA首先应用于c-MYC、MAX和E2F转录因子的公开可用芯片结合染色质免疫沉淀(ChIP-on-chip)数据,识别出相应因子和潜在共激活因子特征的显著富集。利用3T3-L1脂肪生成的时间尺度表达谱,我们观察到已知脂肪生成因子如C/EBPα、C/EBPβ和PPARγ特征的富集,这与之前的报道在时间上一致。BSEA还应用于人和小鼠的组织特异性表达谱,识别出肝脏中的HNF-4和心脏中的MEF-2等众所周知的组织特异性转录因子以及其他假定的组织特异性调节因子。由于BSEA具有处理各种微阵列数据集的广泛通用性,它可以识别转录调控起主要作用的全局微阵列数据的关键调节因子。作为一种通用方法,BSEA将有助于阐明转录调控网络,这是功能基因组学中的主要挑战。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验