Suppr超能文献

非洲爪蟾双尾-C蛋白是两栖动物前肾分化所必需的。

Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros.

作者信息

Tran Uyen, Pickney L Mary, Ozpolat B Duygu, Wessely Oliver

机构信息

LSU Health Sciences Center, Department of Cell Biology, New Orleans, LA 70112, USA.

出版信息

Dev Biol. 2007 Jul 1;307(1):152-64. doi: 10.1016/j.ydbio.2007.04.030. Epub 2007 May 1.

Abstract

The RNA-binding molecule Bicaudal-C regulates embryonic development in Drosophila and Xenopus. Interestingly, mouse mutants of Bicaudal-C do not show early patterning defects, but instead develop polycystic kidney disease (PKD). To further investigate the molecular mechanism of Bicaudal-C in kidney development, we analyzed its function in the developing amphibian pronephros. Bicaudal-C mRNA was present in the epithelial structures of the Xenopus pronephros, the tubules and the duct, but not the glomus. Inhibition of the translation of endogenous Bicaudal-C with antisense morpholino oligomers (xBic-C-MO) led to a PKD-like phenotype in Xenopus. Embryos lacking Bicaudal-C developed generalized edemas and dilated pronephric tubules and ducts. This phenotype was caused by impaired differentiation of the pronephros. Molecular markers specifically expressed in the late distal tubule were absent in xBic-C-MO-injected embryos. Furthermore, Bicaudal-C was not required for primary cilia formation, an important organelle affected in PKD. These data support the idea that Bicaudal-C functions downstream or parallel of a cilia-regulated signaling pathway. This pathway is required for terminal differentiation of the late distal tubule of the Xenopus pronephros and regulates renal epithelial cell differentiation, which--when disrupted--results in PKD.

摘要

RNA结合分子双尾-C调节果蝇和非洲爪蟾的胚胎发育。有趣的是,双尾-C的小鼠突变体并未表现出早期模式缺陷,而是患上了多囊肾病(PKD)。为了进一步研究双尾-C在肾脏发育中的分子机制,我们分析了其在发育中的两栖类前肾中的功能。双尾-C mRNA存在于非洲爪蟾前肾的上皮结构、肾小管和导管中,但不存在于肾小球中。用反义吗啉代寡核苷酸(xBic-C-MO)抑制内源性双尾-C的翻译会导致非洲爪蟾出现PKD样表型。缺乏双尾-C的胚胎出现全身性水肿以及前肾小管和导管扩张。这种表型是由前肾分化受损引起的。在注射了xBic-C-MO的胚胎中,晚期远端小管中特异性表达的分子标记物缺失。此外,双尾-C对于初级纤毛的形成并非必需,而初级纤毛是PKD中受影响的重要细胞器。这些数据支持了双尾-C在纤毛调节的信号通路下游或与之平行发挥作用的观点。该信号通路对于非洲爪蟾前肾晚期远端小管的终末分化是必需的,并调节肾上皮细胞分化,当该通路被破坏时会导致PKD。

相似文献

1
Xenopus Bicaudal-C is required for the differentiation of the amphibian pronephros.
Dev Biol. 2007 Jul 1;307(1):152-64. doi: 10.1016/j.ydbio.2007.04.030. Epub 2007 May 1.
5
pdzrn3 is required for pronephros morphogenesis in Xenopus laevis.
Int J Dev Biol. 2016;60(1-3):57-63. doi: 10.1387/ijdb.150381ld.
6
Xenopus Claudin-6 is required for embryonic pronephros morphogenesis and terminal differentiation.
Biochem Biophys Res Commun. 2015 Jul 3;462(3):178-83. doi: 10.1016/j.bbrc.2015.04.065. Epub 2015 May 13.
7
Requirement of Wnt/beta-catenin signaling in pronephric kidney development.
Mech Dev. 2009 Mar-Apr;126(3-4):142-59. doi: 10.1016/j.mod.2008.11.007. Epub 2008 Dec 7.
8
Evi1 is specifically expressed in the distal tubule and duct of the Xenopus pronephros and plays a role in its formation.
Dev Biol. 2006 Jun 1;294(1):203-19. doi: 10.1016/j.ydbio.2006.02.040. Epub 2006 Mar 30.
9
In vitro induction of the pronephric duct in Xenopus explants.
Dev Growth Differ. 2002 Apr;44(2):161-7. doi: 10.1046/j.1440-169x.2002.00631.x.
10
Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney.
Dev Biol. 2002 Aug 1;248(1):13-28. doi: 10.1006/dbio.2002.0712.

引用本文的文献

3
Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation.
Sci Rep. 2023 Oct 4;13(1):16671. doi: 10.1038/s41598-023-43662-1.
4
Bicaudal-C Post-transcriptional regulator of cell fates and functions.
Front Cell Dev Biol. 2022 Sep 7;10:981696. doi: 10.3389/fcell.2022.981696. eCollection 2022.
5
RNA-binding proteins and their role in kidney disease.
Nat Rev Nephrol. 2022 Mar;18(3):153-170. doi: 10.1038/s41581-021-00497-1. Epub 2021 Nov 3.
6
variants are associated with multiple congenital anomalies including ciliopathy phenotypes.
J Med Genet. 2021 Jul;58(7):453-464. doi: 10.1136/jmedgenet-2019-106805. Epub 2020 Jul 6.
8
Modeling congenital kidney diseases in .
Dis Model Mech. 2019 Apr 9;12(4):dmm038604. doi: 10.1242/dmm.038604.
9
Modeling Renal Disease "On the Fly".
Biomed Res Int. 2018 May 31;2018:5697436. doi: 10.1155/2018/5697436. eCollection 2018.
10

本文引用的文献

2
Notch2, but not Notch1, is required for proximal fate acquisition in the mammalian nephron.
Development. 2007 Feb;134(4):801-11. doi: 10.1242/dev.02773. Epub 2007 Jan 17.
3
Cilia-driven leftward flow determines laterality in Xenopus.
Curr Biol. 2007 Jan 9;17(1):60-6. doi: 10.1016/j.cub.2006.10.067.
4
Polycystin-2 immunolocalization and function in zebrafish.
J Am Soc Nephrol. 2006 Oct;17(10):2706-18. doi: 10.1681/ASN.2006040412. Epub 2006 Aug 30.
5
The left-right axis in the mouse: from origin to morphology.
Development. 2006 Jun;133(11):2095-104. doi: 10.1242/dev.02384. Epub 2006 May 3.
6
On the Effect of Removal of the Pronephros of the Amphibian Embryo.
Proc Natl Acad Sci U S A. 1916 Apr;2(4):231-4. doi: 10.1073/pnas.2.4.231.
7
Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function.
PLoS Genet. 2005 Oct;1(4):e53. doi: 10.1371/journal.pgen.0010053. Epub 2005 Oct 28.
9
Cilia and Hedgehog responsiveness in the mouse.
Proc Natl Acad Sci U S A. 2005 Aug 9;102(32):11325-30. doi: 10.1073/pnas.0505328102. Epub 2005 Aug 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验