Rosker Christian, Lohberger Birgit, Hofer Doris, Steinecker Bibiane, Quasthoff Stefan, Schreibmayer Wolfgang
Institute for Biophysics, Center for Physiological Medicine, Medical University of Graz, Harrachgasse 21/4, Graz, Austria.
Am J Physiol Cell Physiol. 2007 Aug;293(2):C783-9. doi: 10.1152/ajpcell.00070.2007. Epub 2007 May 23.
The blocking efficacy of 4,9-anhydro-TTX (4,9-ah-TTX) and TTX on several isoforms of voltage-dependent sodium channels, expressed in Xenopus laevis oocytes, was tested (Na(v1.2), Na(v1.3), Na(v1.4), Na(v1.5), Na(v1.6), Na(v1.7), and Na(v1.8)). Generally, TTX was 40-231 times more effective, when compared with 4,9-ah-TTX, on a given isoform. An exception was Na(v1.6), where 4,9-ah-TTX in nanomole per liter concentrations sufficed to result in substantial block, indicating that 4,9-ah-TTX acts specifically at this peculiar isoform. The IC(50) values for TTX/4,9-ah-TTX were as follows (in nmol/l): 7.8 +/- 1.3/1,260 +/- 121 (Na(v1.2)), 2.8 +/- 2.3/341 +/- 36 (Na(v1.3)), 4.5 +/- 1.0/988 +/- 62 (Na(v1.4)), 1,970 +/- 565/78,500 +/- 11,600 (Na(v1.5)), 3.8 +/- 1.5/7.8 +/- 2.3 (Na(v1.6)), 5.5 +/- 1.4/1,270 +/- 251 (Na(v1.7)), and 1,330 +/- 459/>30,000 (Na(v1.8)). Analysis of approximal half-maximal doses of both compounds revealed minor effects on voltage-dependent activation only, whereas steady-state inactivation was shifted to more negative potentials by both TTX and 4,9-ah-TTX in the case of the Na(v1.6) subunit, but not in the case of other TTX-sensitive ones. TTX shifted steady-state inactivation also to more negative potentials in case of the TTX-insensitive Na(v1.5) subunit, where it also exerted profound effects on the time course of recovery from inactivation. Isoform-specific interaction of toxins with ion channels is frequently observed in the case of proteinaceous toxins. Although the sensitivity of Na(v1.1) to 4,9-ah-TTX is not known, here we report evidence on a highly isoform-specific TTX analog that may well turn out to be an invaluable tool in research for the identification of Na(v1.6)-mediated function, but also for therapeutic intervention.
测试了4,9-脱水河豚毒素(4,9-ah-TTX)和河豚毒素(TTX)对非洲爪蟾卵母细胞中表达的几种电压依赖性钠通道亚型(Na(v1.2)、Na(v1.3)、Na(v1.4)、Na(v1.5)、Na(v1.6)、Na(v1.7)和Na(v1.8))的阻断效力。一般来说,在给定的亚型上,与4,9-ah-TTX相比,TTX的效力要高40 - 231倍。Na(v1.6)是个例外,每升纳摩尔浓度的4,9-ah-TTX就足以导致显著阻断,这表明4,9-ah-TTX在这种特殊亚型上有特异性作用。TTX/4,9-ah-TTX的半数抑制浓度(IC(50))值如下(单位:nmol/l):7.8±1.3/1260±121(Na(v1.2))、2.8±2.3/341±36(Na(v1.3))、4.5±1.0/988±62(Na(v1.4))、1970±565/78500±11600(Na(v1.5))、3.8±1.5/7.8±2.3(Na(v1.6))、5.5±1.4/1270±251(Na(v1.7))、1330±459/>30000(Na(v1.8))。对这两种化合物近似半数最大剂量的分析表明,它们仅对电压依赖性激活有轻微影响,而在Na(v1.6)亚基的情况下,TTX和4,9-ah-TTX都使稳态失活向更负的电位偏移,但在其他TTX敏感亚基的情况下并非如此。在TTX不敏感的Na(v1.5)亚基的情况下,TTX也使稳态失活向更负的电位偏移,并且它对失活恢复的时间进程也有深远影响。在蛋白质毒素的情况下,经常观察到毒素与离子通道的亚型特异性相互作用。尽管尚不清楚Na(v1.1)对4,9-ah-TTX的敏感性,但在此我们报告了一种高度亚型特异性的TTX类似物的证据,它很可能成为鉴定Na(v1.6)介导功能的研究以及治疗干预中非常有价值的工具。