Wu Nanping, Cepeda Carlos, Zhuang Xiaoxi, Levine Michael S
Mental Retardation Research Center, David Geffen School of Medicine, UCLA School of Medicine, Los Angeles, CA 90024, USA.
J Neurophysiol. 2007 Jul;98(1):423-32. doi: 10.1152/jn.00971.2006. Epub 2007 May 23.
Dopamine (DA) modulates glutamate neurotransmission in the striatum. Abnormal DA modulation has been implicated in neurological and psychiatric disorders. The development of DA transporter knock-down (DAT-KD) mice has permitted modeling of these disorders and has shed new light on DA modulation. DAT-KD mice exhibit increased extracellular DA, hyperactivity, and alterations in habituation. We used whole cell patch-clamp recordings from visually identified striatal neurons in slices to examine the effects of DAT-KD on corticostriatal transmission. Electrophysiological recordings from medium-sized spiny neurons in the dorsal striatum revealed alterations in both amplitude and frequency, of spontaneous glutamate receptor-mediated synaptic currents in cells from DAT-KD mice. Furthermore, kinetic analyses revealed that these currents had shorter half-amplitude durations and faster decay times. In contrast, GABA-receptor-mediated synaptic currents were not altered. Striatal neurons from DAT-KD mice also responded differently to amphetamine, cocaine, and DA D2-receptor agonists or antagonists compared with wildtype (WT) littermate controls. In WTs amphetamine and cocaine reduced the frequency of spontaneous glutamate currents and these effects appeared to be mediated by activation of D2 receptors. In contrast, in DAT-KD mice either no changes or only small increases in frequency occurred. D2-receptor agonists or antagonists also had opposing effects in WT and DAT-KD mice. Together, these results indicate that chronically increased extracellular DA produces long-lasting changes in corticostriatal communication that may be mediated by changes in D2-receptor function. These findings have implications for understanding mechanisms underlying attention deficit hyperactivity disorder and Tourette's syndrome and may provide insights into novel therapeutic approaches.
多巴胺(DA)调节纹状体中的谷氨酸神经传递。DA调节异常与神经和精神疾病有关。DA转运体敲低(DAT-KD)小鼠的开发使得对这些疾病进行建模成为可能,并为DA调节提供了新的线索。DAT-KD小鼠表现出细胞外DA增加、多动和习惯化改变。我们使用来自切片中视觉识别的纹状体神经元的全细胞膜片钳记录来研究DAT-KD对皮质纹状体传递的影响。来自背侧纹状体中型棘状神经元的电生理记录显示,DAT-KD小鼠细胞中自发谷氨酸受体介导的突触电流的幅度和频率均发生改变。此外,动力学分析表明,这些电流的半幅度持续时间更短,衰减时间更快。相比之下,GABA受体介导的突触电流没有改变。与野生型(WT)同窝对照相比,DAT-KD小鼠的纹状体神经元对苯丙胺、可卡因以及DA D2受体激动剂或拮抗剂的反应也不同。在WT小鼠中,苯丙胺和可卡因降低了自发谷氨酸电流的频率,这些作用似乎是由D2受体的激活介导的。相比之下,在DAT-KD小鼠中,频率要么没有变化,要么仅略有增加。D2受体激动剂或拮抗剂在WT和DAT-KD小鼠中也有相反的作用。总之,这些结果表明,细胞外DA长期增加会导致皮质纹状体通信发生持久变化,这可能是由D2受体功能的变化介导的。这些发现对于理解注意力缺陷多动障碍和妥瑞氏综合征的潜在机制具有重要意义,并可能为新的治疗方法提供见解。