Suppr超能文献

通过对行为中的猴子进行电压敏感染料成像获得的视觉皮层快速精确视网膜定位图谱。

Rapid and precise retinotopic mapping of the visual cortex obtained by voltage-sensitive dye imaging in the behaving monkey.

作者信息

Yang Zhiyong, Heeger David J, Seidemann Eyal

机构信息

Department of Psychology and Center for Perceptual Systems, The University of Texas at Austin, Austin, Texas 78712-0187, USA.

出版信息

J Neurophysiol. 2007 Aug;98(2):1002-14. doi: 10.1152/jn.00417.2007. Epub 2007 May 23.

Abstract

Retinotopy is a fundamental organizing principle of the visual cortex. Over the years, a variety of techniques have been used to examine it. None of these techniques, however, provides a way to rapidly characterize retinotopy, at the submillimeter range, in alert, behaving subjects. Voltage-sensitive dye imaging (VSDI) can be used to monitor neuronal population activity at high spatial and temporal resolutions. Here we present a VSDI protocol for rapid and precise retinotopic mapping in the behaving monkey. Two monkeys performed a fixation task while thin visual stimuli swept periodically at a high speed in one of two possible directions through a small region of visual space. Because visual space is represented systematically across the cortical surface, each moving stimulus produced a traveling wave of activity in the cortex that could be precisely measured with VSDI. The time at which the peak of the traveling wave reached each location in the cortex linked this location with its retinotopic representation. We obtained detailed retinotopic maps from a region of about 1 cm(2) over the dorsal portion of areas V1 and V2. Retinotopy obtained during <4 min of imaging had a spatial precision of 0.11-0.19 mm, was consistent across experiments, and reliably predicted the locations of the response to small localized stimuli. The ability to rapidly obtain precise retinotopic maps in behaving monkeys opens the door for detailed analysis of the relationship between spatiotemporal dynamics of population responses in the visual cortex and perceptually guided behavior.

摘要

视网膜拓扑结构是视觉皮层的基本组织原则。多年来,人们使用了各种技术来研究它。然而,这些技术都无法在亚毫米范围内快速表征清醒、行为活动中的受试者的视网膜拓扑结构。电压敏感染料成像(VSDI)可用于在高空间和时间分辨率下监测神经元群体活动。在此,我们提出一种用于在行为活动中的猴子身上进行快速精确视网膜拓扑映射的VSDI方案。两只猴子执行注视任务,同时细视觉刺激在两个可能方向之一上以高速周期性地扫过视觉空间的一个小区域。由于视觉空间在整个皮层表面有系统地呈现,每个移动刺激在皮层中产生一个活动行波,可用VSDI精确测量。活动行波峰值到达皮层中每个位置的时间将该位置与其视网膜拓扑表征联系起来。我们从V1和V2区域背侧约1平方厘米的区域获得了详细的视网膜拓扑图。在成像不到4分钟的时间内获得的视网膜拓扑结构具有0.11 - 0.19毫米的空间精度,在不同实验中保持一致,并且可靠地预测了对小局部刺激的反应位置。在行为活动中的猴子身上快速获得精确视网膜拓扑图的能力为详细分析视觉皮层中群体反应的时空动态与感知引导行为之间的关系打开了大门。

相似文献

1
Rapid and precise retinotopic mapping of the visual cortex obtained by voltage-sensitive dye imaging in the behaving monkey.
J Neurophysiol. 2007 Aug;98(2):1002-14. doi: 10.1152/jn.00417.2007. Epub 2007 May 23.
2
Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
J Neurophysiol. 2002 Dec;88(6):3421-38. doi: 10.1152/jn.00194.2002.
3
Functional architecture of retinotopy in visual association cortex of behaving monkey.
Cereb Cortex. 2005 Apr;15(4):460-78. doi: 10.1093/cercor/bhh148.
4
Suppressive Traveling Waves Shape Representations of Illusory Motion in Primary Visual Cortex of Awake Primate.
J Neurosci. 2019 May 29;39(22):4282-4298. doi: 10.1523/JNEUROSCI.2792-18.2019. Epub 2019 Mar 18.
5
Retinotopy versus face selectivity in macaque visual cortex.
J Cogn Neurosci. 2014 Dec;26(12):2691-700. doi: 10.1162/jocn_a_00672. Epub 2014 Jun 4.
7
Spatial attention improves reliability of fMRI retinotopic mapping signals in occipital and parietal cortex.
Neuroimage. 2010 Nov 1;53(2):526-33. doi: 10.1016/j.neuroimage.2010.06.063. Epub 2010 Jul 1.
9
Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation.
Cereb Cortex. 2012 Feb;22(2):294-307. doi: 10.1093/cercor/bhr102. Epub 2011 Jun 7.
10
Retinotopic mapping of the human visual cortex at a magnetic field strength of 7T.
Clin Neurophysiol. 2009 Jan;120(1):108-16. doi: 10.1016/j.clinph.2008.10.153. Epub 2008 Dec 13.

引用本文的文献

1
Ultrafast optical imaging techniques for exploring rapid neuronal dynamics.
Neurophotonics. 2025 Jan;12(Suppl 1):S14608. doi: 10.1117/1.NPh.12.S1.S14608. Epub 2025 Feb 27.
2
Neural correlates of perceptual similarity masking in primate V1.
Elife. 2024 Apr 9;12:RP89570. doi: 10.7554/eLife.89570.
3
Mesoscopic calcium imaging in a head-unrestrained male non-human primate using a lensless microscope.
Nat Commun. 2024 Feb 10;15(1):1271. doi: 10.1038/s41467-024-45417-6.
4
NEURAL CORRELATES OF PERCEPTUAL SIMILARITY MASKING IN PRIMATE V1.
bioRxiv. 2023 Oct 30:2023.07.06.547970. doi: 10.1101/2023.07.06.547970.
5
Spatial modulation of visual responses arises in cortex with active navigation.
Elife. 2021 Feb 4;10:e63705. doi: 10.7554/eLife.63705.
7
Voltage-Gated Intrinsic Conductances Shape the Input-Output Relationship of Cortical Neurons in Behaving Primate V1.
Neuron. 2020 Jul 8;107(1):185-196.e4. doi: 10.1016/j.neuron.2020.04.001. Epub 2020 Apr 28.
8
Scale-Invariant Visual Capabilities Explained by Topographic Representations of Luminance and Texture in Primate V1.
Neuron. 2018 Dec 19;100(6):1504-1512.e4. doi: 10.1016/j.neuron.2018.10.020. Epub 2018 Nov 1.
9
Nonlinear Lateral Interactions in V1 Population Responses Explained by a Contrast Gain Control Model.
J Neurosci. 2018 Nov 21;38(47):10069-10079. doi: 10.1523/JNEUROSCI.0246-18.2018. Epub 2018 Oct 3.
10
Linking V1 Activity to Behavior.
Annu Rev Vis Sci. 2018 Sep 15;4:287-310. doi: 10.1146/annurev-vision-102016-061324. Epub 2018 Jul 5.

本文引用的文献

1
Two retinotopic visual areas in human lateral occipital cortex.
J Neurosci. 2006 Dec 20;26(51):13128-42. doi: 10.1523/JNEUROSCI.1657-06.2006.
2
Optimal decoding of correlated neural population responses in the primate visual cortex.
Nat Neurosci. 2006 Nov;9(11):1412-20. doi: 10.1038/nn1792. Epub 2006 Oct 22.
3
Multi-area visuotopic map complexes in macaque striate and extra-striate cortex.
Vision Res. 2006 Oct;46(20):3336-59. doi: 10.1016/j.visres.2006.03.006. Epub 2006 Jul 10.
4
Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics.
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):709-31. doi: 10.1098/rstb.2005.1629.
5
Visual field map clusters in human cortex.
Philos Trans R Soc Lond B Biol Sci. 2005 Apr 29;360(1456):693-707. doi: 10.1098/rstb.2005.1628.
6
Traveling waves of activity in primary visual cortex during binocular rivalry.
Nat Neurosci. 2005 Jan;8(1):22-3. doi: 10.1038/nn1365. Epub 2004 Dec 5.
7
VSDI: a new era in functional imaging of cortical dynamics.
Nat Rev Neurosci. 2004 Nov;5(11):874-85. doi: 10.1038/nrn1536.
8
Visuotopic mapping through a multichannel stimulating implant in primate V1.
J Neurophysiol. 2005 Mar;93(3):1659-70. doi: 10.1152/jn.01213.2003. Epub 2004 Sep 1.
9
Imaging cortical correlates of illusion in early visual cortex.
Nature. 2004 Mar 25;428(6981):423-6. doi: 10.1038/nature02396.
10
Shape and arrangement of columns in cat's striate cortex.
J Physiol. 1963 Mar;165(3):559-68. doi: 10.1113/jphysiol.1963.sp007079.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验