Maia André F, Lopes Carla S, Sunkel Claudio E
IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.
Cell Cycle. 2007 Jun 1;6(11):1367-78. doi: 10.4161/cc.6.11.4271. Epub 2007 Jun 11.
The spindle assembly checkpoint ensures the fidelity of chromosome segregation at each cell division cycle. Previous reports have indicated that in higher eukaryotes checkpoint proteins, such as BubR1, are also implicated in chromosome congression, more specifically that BubR1 regulates chromosome-spindle attachments. Also, several studies have shown that BubR1 interacts with the microtubule motor protein CENP-E. Whether this association contributes to the regulation of chromosome-spindle attachments is not yet known. Accordingly, we performed a detailed analysis of microtubule-kinetochore interactions after depletion of BubR1 and the Drosophila CENP-E homolog, CENP-meta by RNAi. We find that depletion of BubR1 affects mitosis very differently from depletion of CENP-meta. While BubR1-depleted cells exit mitosis prematurely due to loss of SAC activity, CENP-meta-depleted cells accumulate in prometaphase and do not exit mitosis after spindle damage. Also, in contrast to cells depleted for CENP-meta, cells depleted for BubR1 very rarely reach full metaphase alignment even if arrested in mitosis with the proteasome inhibitor MG132. More importantly, we show for the first time that BubR1-depleted cells contain a high frequency of either monoriented or fully unattached chromosomes while most CENP-meta dsRNAi-treated cells have chromosomes attached to spindle microtubules. Moreover, simultaneous depletion of both proteins reveals that absence of CENP-meta is able to partially rescue the unattached chromosome phenotype observed after BubR1 depletion. These results strongly suggest that while BubR1 is required to promote stable microtubule kinetochore attachment, CENP-E appears to be required to destabilize kinetochore attachment. Overall our results suggest that activation of the mechanism that corrects inappropriate kinetochore attachment requires the antagonistic effects of BubR1 and CENP-E.
纺锤体组装检验点确保了每个细胞分裂周期中染色体分离的准确性。先前的报道表明,在高等真核生物中,诸如BubR1等检验点蛋白也参与染色体列队,更具体地说,BubR1调节染色体与纺锤体的附着。此外,多项研究表明BubR1与微管动力蛋白CENP-E相互作用。这种关联是否有助于调节染色体与纺锤体的附着尚不清楚。因此,我们通过RNA干扰对BubR1和果蝇CENP-E同源物CENP-meta缺失后的微管与动粒的相互作用进行了详细分析。我们发现,BubR1的缺失对有丝分裂的影响与CENP-meta的缺失截然不同。由于纺锤体组装检验点(SAC)活性丧失,BubR1缺失的细胞过早退出有丝分裂,而CENP-meta缺失的细胞在前中期积累,纺锤体受损后不会退出有丝分裂。此外,与CENP-meta缺失的细胞不同,即使使用蛋白酶体抑制剂MG132使细胞停滞在有丝分裂期,BubR1缺失的细胞也很少能达到完全的中期排列。更重要的是,我们首次表明,BubR1缺失的细胞中存在高频率的单定向或完全未附着的染色体,而大多数经CENP-meta双链RNA干扰处理的细胞中的染色体与纺锤体微管相连。此外,两种蛋白质的同时缺失表明,CENP-meta的缺失能够部分挽救BubR1缺失后观察到的未附着染色体表型。这些结果强烈表明,虽然促进微管与动粒稳定附着需要BubR1,但似乎需要CENP-E来破坏动粒附着的稳定性。总体而言,我们的结果表明,纠正不适当的动粒附着机制的激活需要BubR1和CENP-E的拮抗作用。