Suppr超能文献

对具有不完整分层的匹配病例对照数据进行分析:应用纵向方法

Analysis of matched case-control data with incomplete strata: applying longitudinal approaches.

作者信息

Lin I-Feng, Lai Ming-Yun, Chuang Pei-Hung

机构信息

Division of Biostatistics, Institute of Public Health, National Yang-Ming University, Taipei, Taiwan.

出版信息

Epidemiology. 2007 Jul;18(4):446-52. doi: 10.1097/EDE.0b013e318064630a.

Abstract

BACKGROUND

Matched case-control data have a structure that is similar to longitudinal data with correlated outcomes, except for a retrospective sampling scheme. In conditional logistic regression analysis, sets that are incomplete due to missing covariates and sets with identical values of the covariates do not contribute to the estimation; both situations may cause a loss in efficiency. These problems are more severe when sample sizes are small. We evaluated retrospective models for longitudinal data as alternatives in analyzing matched case-control data.

METHODS

We conducted simulations to compare the properties of matched case-control data analyses using conditional likelihood and a commonly used longitudinal approach generalized estimating equation (GEE). We simulated scenarios for one-to-one and one-to-two matching designs, each with various sizes of matching strata, with complete and incomplete strata, and with dichotomous and normal exposures.

RESULTS AND CONCLUSIONS

The simulations show that the estimates by conditional likelihood and GEE methods are consistent, and a proper coverage was reached for both binary and continuous exposures. The estimates produced by conditional likelihood have greater standard errors than those obtained by GEE. These relative efficiency losses are more substantial when data contain incomplete matched sets and when the data have small sizes of matching strata; these can be improved by including more controls in the strata. These losses of efficiency also increase as the magnitude of the association increases.

摘要

背景

匹配的病例对照数据具有一种结构,除了回顾性抽样方案外,该结构与具有相关结局的纵向数据相似。在条件逻辑回归分析中,由于协变量缺失而不完整的组以及协变量值相同的组对估计没有贡献;这两种情况都可能导致效率损失。当样本量较小时,这些问题会更加严重。我们评估了用于纵向数据的回顾性模型,作为分析匹配病例对照数据的替代方法。

方法

我们进行了模拟,以比较使用条件似然和常用的纵向方法广义估计方程(GEE)进行匹配病例对照数据分析的特性。我们模拟了一对一和一对二匹配设计的场景,每种设计都有不同大小的匹配层,有完整和不完整的层,以及二分和正态暴露。

结果与结论

模拟表明,条件似然和GEE方法的估计是一致的,对于二元和连续暴露都达到了适当的覆盖率。条件似然产生的估计比GEE获得的估计具有更大的标准误差。当数据包含不完整的匹配组以及匹配层较小时,这些相对效率损失更为显著;通过在层中纳入更多对照可以改善这些情况。随着关联程度的增加,这些效率损失也会增加。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验