确定生物合理主成分分析(PCA)模型中的主方向数量。

Determination of the number of principal directions in a biologically plausible PCA model.

作者信息

Lv Jian Cheng, Yi Zhang, Tan Kok Kiong

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):910-6. doi: 10.1109/TNN.2007.891193.

Abstract

Adaptively determining an appropriate number of principal directions for principal component analysis (PCA) neural networks is an important problem to address when one uses PCA neural networks for online feature extraction. In this letter, inspired from biological neural networks, a single-layer neural network model with lateral connections is proposed which uses an improved generalized Hebbian algorithm (GHA) to address this problem. In the proposed model, the number of principal directions can be adaptively determined to approximate the intrinsic dimensionality of the given data set so that the dimensionality of the data set can be reduced to approach the intrinsic dimensionality to any required precision through the network.

摘要

当使用主成分分析(PCA)神经网络进行在线特征提取时,自适应地确定PCA神经网络的主方向数量是一个需要解决的重要问题。在这封信中,受生物神经网络的启发,提出了一种具有横向连接的单层神经网络模型,该模型使用改进的广义Hebbian算法(GHA)来解决这个问题。在所提出的模型中,可以自适应地确定主方向的数量,以近似给定数据集的内在维度,从而通过网络将数据集的维度降低到接近内在维度的任何所需精度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索