Suppr超能文献

基于神经网络的在线主成分分析的自适应降维

Adaptive dimensionality reduction for neural network-based online principal component analysis.

作者信息

Migenda Nico, Möller Ralf, Schenck Wolfram

机构信息

Center for Applied Data Science Gütersloh, Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, Bielefeld, Germany.

Computer Engineering Group, Faculty of Technology, Bielefeld University, Bielefeld, Germany.

出版信息

PLoS One. 2021 Mar 30;16(3):e0248896. doi: 10.1371/journal.pone.0248896. eCollection 2021.

Abstract

"Principal Component Analysis" (PCA) is an established linear technique for dimensionality reduction. It performs an orthonormal transformation to replace possibly correlated variables with a smaller set of linearly independent variables, the so-called principal components, which capture a large portion of the data variance. The problem of finding the optimal number of principal components has been widely studied for offline PCA. However, when working with streaming data, the optimal number changes continuously. This requires to update both the principal components and the dimensionality in every timestep. While the continuous update of the principal components is widely studied, the available algorithms for dimensionality adjustment are limited to an increment of one in neural network-based and incremental PCA. Therefore, existing approaches cannot account for abrupt changes in the presented data. The contribution of this work is to enable in neural network-based PCA the continuous dimensionality adjustment by an arbitrary number without the necessity to learn all principal components. A novel algorithm is presented that utilizes several PCA characteristics to adaptivly update the optimal number of principal components for neural network-based PCA. A precise estimation of the required dimensionality reduces the computational effort while ensuring that the desired amount of variance is kept. The computational complexity of the proposed algorithm is investigated and it is benchmarked in an experimental study against other neural network-based and incremental PCA approaches where it produces highly competitive results.

摘要

“主成分分析”(PCA)是一种成熟的用于降维的线性技术。它执行正交变换,用一组较小的线性独立变量(即所谓的主成分)来替代可能相关的变量,这些主成分捕获了大部分数据方差。对于离线主成分分析,寻找主成分的最优数量的问题已得到广泛研究。然而,在处理流数据时,最优数量会不断变化。这就需要在每个时间步更新主成分和维度。虽然主成分的连续更新已得到广泛研究,但现有的用于维度调整的算法在基于神经网络的和增量主成分分析中仅限于每次增加一个维度。因此,现有方法无法应对所呈现数据中的突然变化。这项工作的贡献在于,在基于神经网络的主成分分析中实现任意数量的连续维度调整,而无需学习所有主成分。提出了一种新颖的算法,该算法利用主成分分析的几个特性,为基于神经网络的主成分分析自适应地更新主成分的最优数量。对所需维度的精确估计减少了计算量,同时确保保留所需的方差量。研究了所提出算法的计算复杂度,并在实验研究中与其他基于神经网络的和增量主成分分析方法进行了基准测试,结果显示该算法具有很强的竞争力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25d0/8009402/98e057d6197b/pone.0248896.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验