Suppr超能文献

基于全局启发式搜索的神经网络学习

Neural network learning with global heuristic search.

作者信息

Jordanov Ivan, Georgieva Antoniya

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):937-42. doi: 10.1109/TNN.2007.891633.

Abstract

A novel hybrid global optimization (GO) algorithm applied for feedforward neural networks (NNs) supervised learning is investigated. The network weights are determined by minimizing the traditional mean square error function. The optimization technique, called LP(tau)NM, combines a novel global heuristic search based on LPtau low-discrepancy sequences of points, and a simplex local search. The proposed method is initially tested on multimodal mathematical functions and subsequently applied for training moderate size NNs for solving popular benchmark problems. Finally, the results are analyzed, discussed, and compared with such as from backpropagation (BP) (Levenberg-Marquardt) and differential evolution methods.

摘要

研究了一种应用于前馈神经网络(NN)监督学习的新型混合全局优化(GO)算法。通过最小化传统的均方误差函数来确定网络权重。这种称为LP(tau)NM的优化技术结合了一种基于LPtau低差异点序列的新型全局启发式搜索和一种单纯形局部搜索。所提出的方法首先在多峰数学函数上进行测试,随后应用于训练中等规模的神经网络以解决常见的基准问题。最后,对结果进行分析、讨论,并与反向传播(BP)(Levenberg-Marquardt)和差分进化方法等的结果进行比较。

相似文献

1
Neural network learning with global heuristic search.基于全局启发式搜索的神经网络学习
IEEE Trans Neural Netw. 2007 May;18(3):937-42. doi: 10.1109/TNN.2007.891633.
3
Parameter incremental learning algorithm for neural networks.神经网络的参数增量学习算法
IEEE Trans Neural Netw. 2006 Nov;17(6):1424-38. doi: 10.1109/TNN.2006.880581.
4
Multifeedback-layer neural network.多反馈层神经网络。
IEEE Trans Neural Netw. 2007 Mar;18(2):373-84. doi: 10.1109/TNN.2006.885439.
7
Iterative least squares functional networks classifier.迭代最小二乘函数网络分类器
IEEE Trans Neural Netw. 2007 May;18(3):844-50. doi: 10.1109/TNN.2007.891632.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验