Suppr超能文献

基于神经网络的非线性自适应动态解耦控制

Neural-network-based nonlinear adaptive dynamical decoupling control.

作者信息

Fu Yue, Chai Tianyou

出版信息

IEEE Trans Neural Netw. 2007 May;18(3):921-5. doi: 10.1109/TNN.2007.891588.

Abstract

In this letter, a nonlinear adaptive dynamical decoupling control algorithm using neural networks (NNs), a novel technique, is proposed for a class of uncertain nonlinear multivariable discrete-time dynamical systems. By combining open-loop decoupling compensation and generalized minimum variance adaptive scheme with NNs, complete dynamical decoupling is realized. The algorithm is applicable to the systems which are open-loop unstable and nonminimum phase in a neighborhood of the origin [symbol: see text]. In the domain [symbol: see text], it can assure the bounded-input-bounded-output (BIBO) stability of the closed-loop system and can also make the generalized tracking error converge to a neighborhood of zero, whose size is evaluated and depends on the approximation error of the NN. Theory analysis and simulation results are presented to show the effectiveness of the proposed method.

摘要

在这封信中,针对一类不确定非线性多变量离散时间动态系统,提出了一种使用神经网络(NNs)的非线性自适应动态解耦控制算法,这是一种新颖的技术。通过将开环解耦补偿和广义最小方差自适应方案与神经网络相结合,实现了完全动态解耦。该算法适用于在原点邻域内开环不稳定且非最小相位的系统[符号:见原文]。在该域[符号:见原文]中,它可以确保闭环系统的有界输入有界输出(BIBO)稳定性,并且还能使广义跟踪误差收敛到零的邻域,其大小可评估且取决于神经网络的逼近误差。给出了理论分析和仿真结果以表明所提方法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验