Suppr超能文献

红细胞中的系链挤出:整合蛋白从细胞骨架上解离。

Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.

作者信息

Borghi N, Brochard-Wyart F

机构信息

Laboratoire Physico-Chimie Curie, Centre National de la Recherche Scientifique, UMR168, and Université Paris 6, Institut Curie, F-75231 Paris cedex 05, France.

出版信息

Biophys J. 2007 Aug 15;93(4):1369-79. doi: 10.1529/biophysj.106.087908. Epub 2007 May 25.

Abstract

We investigate the mechanical strength of adhesion and the dynamics of detachment of the membrane from the cytoskeleton of red blood cells (RBCs). Using hydrodynamical flows, we extract membrane tethers from RBCs locally attached to the tip of a microneedle. We monitor their extrusion and retraction dynamics versus flow velocity (i.e., extrusion force) over successive extrusion-retraction cycles. Membrane tether extrusion is carried out on healthy RBCs and ATP-depleted or -inhibited RBCs. For healthy RBCs, extrusion is slow, constant in velocity, and reproducible through several extrusion-retraction cycles. For ATP-depleted or -inhibited cells, extrusion dynamics exhibit an aging phenomenon through extrusion-retraction cycles: because the extruded membrane is not able to retract properly onto the cell body, each subsequent extrusion exhibits a loss of resistance to tether growth over the tether length extruded at the previous cycle. In contrast, the additionally extruded tether length follows healthy dynamics. The extrusion velocity L depends on the extrusion force f according to a nonlinear fashion. We interpret this result with a model that includes the dynamical feature of membrane-cytoskeleton association. Tether extrusion leads to a radial membrane flow from the cell body toward the tether. In a distal permeation regime, the flow passes through the integral proteins bound to the cytoskeleton without affecting their binding dynamics. In a proximal sliding regime, where membrane radial velocity is higher, integral proteins can be torn out, leading to the sliding of the membrane over the cytoskeleton. Extrusion dynamics are governed by the more dissipative permeation regime: this leads to an increase of the membrane tension and a narrowing of the tether, which explains the power law behavior of L(f). Our main result is that ATP is necessary for the extruded membrane to retract onto the cell body. Under ATP depletion or inhibition conditions, the aging of the RBC after extrusion is interpreted as a perturbation of membrane-cytoskeleton linkage dynamics.

摘要

我们研究了红细胞(RBC)膜与细胞骨架之间粘附的机械强度以及膜从细胞骨架上脱离的动力学。利用流体动力学流,我们从局部附着在微针尖端的红细胞中提取膜系链。我们监测它们在连续的挤出 - 回缩循环中相对于流速(即挤压力)的挤出和回缩动力学。膜系链挤出实验分别在健康的红细胞以及ATP耗尽或受抑制的红细胞上进行。对于健康的红细胞,挤出过程缓慢,速度恒定,并且在几个挤出 - 回缩循环中具有可重复性。对于ATP耗尽或受抑制的细胞,挤出动力学在挤出 - 回缩循环中表现出老化现象:由于挤出的膜无法正确回缩到细胞体上,因此每个后续挤出过程中,在前一个循环中挤出的系链长度上,系链生长的阻力都会降低。相比之下,额外挤出的系链长度遵循健康的动力学。挤出速度L根据非线性方式取决于挤压力f。我们用一个包含膜 - 细胞骨架关联动态特征的模型来解释这个结果。系链挤出导致从细胞体向系链的径向膜流。在远端渗透状态下,流动通过与细胞骨架结合的整合蛋白,而不影响它们的结合动力学。在近端滑动状态下,膜径向速度较高时,整合蛋白可能会被撕开,导致膜在细胞骨架上滑动。挤出动力学由更耗散的渗透状态控制:这导致膜张力增加和系链变窄,这解释了L(f)的幂律行为。我们的主要结果是,ATP是挤出膜回缩到细胞体上所必需的。在ATP耗尽或抑制条件下,红细胞挤出后的老化被解释为膜 - 细胞骨架连接动力学的扰动。

相似文献

1
Tether extrusion from red blood cells: integral proteins unbinding from cytoskeleton.
Biophys J. 2007 Aug 15;93(4):1369-79. doi: 10.1529/biophysj.106.087908. Epub 2007 May 25.
3
Dynamics of shear-induced ATP release from red blood cells.
Proc Natl Acad Sci U S A. 2008 Oct 28;105(43):16432-7. doi: 10.1073/pnas.0805779105. Epub 2008 Oct 15.
4
Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects.
Biophys J. 2005 Mar;88(3):1859-74. doi: 10.1529/biophysj.104.045328. Epub 2004 Dec 21.
5
Hydrodynamic narrowing of tubes extruded from cells.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7660-3. doi: 10.1073/pnas.0602012103. Epub 2006 May 5.
6
Models of dynamic extraction of lipid tethers from cell membranes.
Phys Biol. 2010 May 7;7(2):026002. doi: 10.1088/1478-3975/7/2/026002.
10
Deformation and flow of membrane into tethers extracted from neuronal growth cones.
Biophys J. 1996 Jan;70(1):358-69. doi: 10.1016/S0006-3495(96)79577-2.

引用本文的文献

1
Cell Membrane Tension Gradients, Membrane Flows, and Cellular Processes.
Physiology (Bethesda). 2024 Jul 1;39(4):0. doi: 10.1152/physiol.00007.2024. Epub 2024 Mar 19.
2
Viscoelastic phenotyping of red blood cells.
Biophys J. 2024 Apr 2;123(7):770-781. doi: 10.1016/j.bpj.2024.01.019. Epub 2024 Jan 23.
3
Measurement of red blood cell deformability during morphological changes using rotating-glass-plate-based scanning optical tweezers.
Biomed Opt Express. 2023 Aug 29;14(9):4979-4989. doi: 10.1364/BOE.499018. eCollection 2023 Sep 1.
4
5
Red blood cell rheology during a complete blood count: A proof of concept.
PLoS One. 2023 Jan 27;18(1):e0280952. doi: 10.1371/journal.pone.0280952. eCollection 2023.
7
Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction.
Front Cell Dev Biol. 2022 Feb 9;10:789841. doi: 10.3389/fcell.2022.789841. eCollection 2022.
8
Rapid propagation of membrane tension at retinal bipolar neuron presynaptic terminals.
Sci Adv. 2022 Jan 7;8(1):eabl4411. doi: 10.1126/sciadv.abl4411. Epub 2022 Jan 5.
9
Biomechanics of Neutrophil Tethers.
Life (Basel). 2021 May 31;11(6):515. doi: 10.3390/life11060515.
10
Red Blood Cells: Tethering, Vesiculation, and Disease in Micro-Vascular Flow.
Diagnostics (Basel). 2021 May 27;11(6):971. doi: 10.3390/diagnostics11060971.

本文引用的文献

1
Hydrodynamic narrowing of tubes extruded from cells.
Proc Natl Acad Sci U S A. 2006 May 16;103(20):7660-3. doi: 10.1073/pnas.0602012103. Epub 2006 May 5.
3
Red blood cell membrane fluctuations and shape controlled by ATP-induced cytoskeletal defects.
Biophys J. 2005 Mar;88(3):1859-74. doi: 10.1529/biophysj.104.045328. Epub 2004 Dec 21.
5
Membrane tether formation from outer hair cells with optical tweezers.
Biophys J. 2002 Mar;82(3):1386-95. doi: 10.1016/S0006-3495(02)75493-3.
7
Probing the relation between force--lifetime--and chemistry in single molecular bonds.
Annu Rev Biophys Biomol Struct. 2001;30:105-28. doi: 10.1146/annurev.biophys.30.1.105.
8
Mechanical fluctuations of the membrane-skeleton are dependent on F-actin ATPase in human erythrocytes.
J Cell Biol. 1998 Jun 29;141(7):1551-61. doi: 10.1083/jcb.141.7.1551.
9
Erythrocyte membrane vesiculation: model for the molecular mechanism of protein sorting.
Proc Natl Acad Sci U S A. 1997 Nov 25;94(24):12969-74. doi: 10.1073/pnas.94.24.12969.
10
Energy of dissociation of lipid bilayer from the membrane skeleton of red blood cells.
Biophys J. 1997 Jun;72(6):2669-78. doi: 10.1016/S0006-3495(97)78910-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验