Lüttge Ulrich
Institute of Botany, Department of Biology, Technical University Darmstadt, Schnittspahnstrasse 3-5, 64287 Darmstadt, Germany.
C R Biol. 2007 May;330(5):375-81. doi: 10.1016/j.crvi.2007.03.014. Epub 2007 Apr 24.
The role of carbon dioxide (CO(2)) as a signal in biochemical regulation networks of plants is fathomed. Transport mechanisms of CO(2) and HCO3- are surveyed, which are the prerequisite for signalling. A CO(2) sensor is not known to date, but any reaction where CO(2)/HCO3- is a substrate can be a candidate. Carbon concentrating mechanisms, e.g., in higher plants C(4)-photosynthesis and crassulacean acid metabolism (CAM), generate high internal CO(2) concentrations, important for photosynthesis, but also as a basis for signalling via diffusion of CO(2). Spatiotemporal dynamics of desynchronization/synchronization of photosynthetic activity over leaves can be followed by chlorophyll fluorescence imaging. One example of desynchronization is based on patchiness of stomatal opening/closing in heterobaric leaves due to anatomic constraints of lateral CO(2) diffusion. During CAM, largely different internal CO(2) concentrations prevail in the leaves, offering opportunities to study the effect of lateral diffusion of CO(2) in synchronizing photosynthetic activity over the entire leaves.
二氧化碳(CO₂)在植物生化调节网络中作为信号的作用已得到深入研究。对CO₂和HCO₃⁻的运输机制进行了综述,这些机制是信号传导的前提条件。迄今为止,尚未发现CO₂传感器,但任何以CO₂/HCO₃⁻为底物的反应都可能是候选对象。碳浓缩机制,例如高等植物中的C₄光合作用和景天酸代谢(CAM),会产生较高的内部CO₂浓度,这对光合作用很重要,同时也是通过CO₂扩散进行信号传导的基础。通过叶绿素荧光成像可以追踪叶片光合活性去同步化/同步化的时空动态。去同步化的一个例子是由于横向CO₂扩散的解剖学限制,异压叶中气孔开闭的不均匀性。在CAM过程中,叶片中存在很大差异的内部CO₂浓度,这为研究CO₂横向扩散在使整个叶片光合活性同步化方面的作用提供了机会