Rodeghiero Mirco, Niinemets Ulo, Cescatti Alessandro
Centro di Ecologia Alpina, Viote del Monte Bondone, Trento 38070, Italy.
Plant Cell Environ. 2007 Aug;30(8):1006-22. doi: 10.1111/j.1365-3040.2007.001689.x.
Estimates of leaf gas-exchange characteristics using standard clamp-on leaf chambers are prone to errors because of diffusion leaks. While some consideration has been given to CO(2) diffusion leaks, potential water vapour diffusion leaks through chamber gaskets have been neglected. We estimated diffusion leaks of two clamp-on Li-Cor LI-6400 (Li-Cor, Inc., Lincoln, NE, USA) leaf chambers with polymer foam gaskets and enclosing either 2 or 6 cm(2) leaf area, and conducted a sensitivity analysis of the diffusion leak effects on Farquhar et al. photosynthesis model parameters - the maximum carboxylase activity of ribulose 1 x 5-bisphosphate carboxylase/oxygenase (Rubisco) (V(cmax)), capacity for photosynthetic electron transport (J(max)) and non-photorespiratory respiration rate in light (R(d)). In addition, net assimilation rate (A(n)) versus intercellular CO(2) (C(i)) responses were measured in leaves of Mediterranean evergreen species Quercus ilex L. enclosing the whole leaf chamber in a polyvinyl fluoride bag flushed with the exhaust air of leaf chamber, thereby effectively reducing the CO(2) and water vapour gradients between ambient air and leaf chamber. For the empty chambers, average diffusion leak for CO(2), K(CO2), (molar flow rate corresponding to unit CO(2) mole fraction difference) was ca. 0.40 micromol s(-1). K(CO2) increased ca. 50% if a dead leaf was clamped between the leaf chamber. Average diffusion leak for H(2)O was ca. 5- to 10-fold larger than the diffusion leak for CO(2). Sensitivity analyses demonstrated that the consequence of a CO(2) diffusion leak was apparent enhancement of A(n) at high CO(2) mole fraction and reduction at lower CO(2) mole fraction, and overall compression of C(i) range. As the result of these modifications, Farquhar et al. model parameters were overestimated. The degree of overestimation increased in the order of V(cmax) < J(max) < R(d), and was larger for smaller chambers and for leaves with lower photosynthetic capacity, leading to overestimation of all three parameters by 70-290% for 2 cm(2), and by 10-60% for 6 cm(2) chamber. Significant diffusion corrections (5-36%) were even required for leaves with high photosynthetic capacity measured in largest chamber. Water vapour diffusion leaks further enhanced the overestimation of model parameters. For small chambers and low photosynthetic capacities, apparent C(i) was simulated to decrease with increasing A(n) because of simultaneous CO(2) and H(2)O diffusion leaks. Measurements in low photosynthetic capacity Quercus ilex leaves enclosed in 2 cm(2) leaf chamber exhibited negative apparent C(i) values at highest A(n). For the same leaves measured with the entire leaf chamber enclosed in the polyvinyl fluoride bag, C(i) and A(n) increased monotonically. While the measurements without the bag could be corrected for diffusion leaks, the required correction in A(n) and transpiration rates was 100-500%, and there was large uncertainty in Farquhar et al. model parameters derived from 'corrected'A(n)/C(i) response curves because of uncertainties in true diffusion leaks. These data demonstrate that both CO(2) and water vapour diffusion leaks need consideration in measurements with clamp-on leaf cuvettes. As plants in natural environments are often characterized by low photosynthetic capacities, cuvette designs need to be improved for reliable measurements in such species.
由于扩散泄漏,使用标准夹式叶室估算叶片气体交换特征容易产生误差。虽然已经对二氧化碳扩散泄漏有所考虑,但通过叶室垫圈的潜在水蒸气扩散泄漏却一直被忽视。我们估算了两个配有聚合物泡沫垫圈、分别包围2平方厘米或6平方厘米叶面积的夹式Li-Cor LI-6400(美国内布拉斯加州林肯市Li-Cor公司)叶室的扩散泄漏情况,并对扩散泄漏对法夸尔等人光合作用模型参数的影响进行了敏感性分析——即1,5-二磷酸核酮糖羧化酶/加氧酶(Rubisco)的最大羧化活性(Vcmax)、光合电子传递能力(Jmax)和光下非光呼吸速率(Rd)。此外,在地中海常绿树种冬青栎(Quercus ilex L.)的叶片中测量了净同化率(An)与胞间二氧化碳(Ci)的响应关系,将整个叶室用聚偏氟乙烯袋包裹,并通入叶室的废气进行冲洗,从而有效降低了环境空气与叶室之间的二氧化碳和水蒸气梯度。对于空叶室,二氧化碳的平均扩散泄漏量KCO₂(对应单位二氧化碳摩尔分数差的摩尔流率)约为0.40微摩尔·秒⁻¹。如果在叶室之间夹一片枯叶,KCO₂会增加约50%。水蒸气的平均扩散泄漏量比二氧化碳的扩散泄漏量大5至10倍。敏感性分析表明,二氧化碳扩散泄漏的结果是在高二氧化碳摩尔分数下An明显增强,在较低二氧化碳摩尔分数下降低,以及Ci范围整体压缩。由于这些变化,法夸尔等人的模型参数被高估。高估程度按Vcmax < Jmax < Rd的顺序增加,对于较小的叶室和光合能力较低的叶片更大,导致2平方厘米叶室中所有三个参数被高估70 - 290%,6平方厘米叶室中被高估10 - 60%。对于在最大叶室中测量的高光合能力叶片,甚至需要进行显著的扩散校正(5 - 36%)。水蒸气扩散泄漏进一步加剧了模型参数的高估。对于小叶室和低光合能力,由于同时存在二氧化碳和水蒸气扩散泄漏,表观Ci会随着An的增加而模拟降低。在2平方厘米叶室中测量的低光合能力冬青栎叶片,在最高An时表现出负的表观Ci值。对于用聚偏氟乙烯袋包裹整个叶室测量的相同叶片,Ci和An单调增加。虽然不使用袋子的测量可以校正扩散泄漏,但An和蒸腾速率所需的校正为100 - 500%,并且由于真实扩散泄漏的不确定性,从“校正后的”An/Ci响应曲线得出的法夸尔等人的模型参数存在很大的不确定性。这些数据表明,在使用夹式叶比色皿进行测量时,需要同时考虑二氧化碳和水蒸气的扩散泄漏。由于自然环境中的植物通常具有低光合能力的特点,需要改进比色皿设计以便对这类物种进行可靠测量。