Ono Toshihide, Hishigaki Haretsugu
Laboratory of Bioinformatics, Otsuka Pharmaceutical Co., Ltd., Kawauchi-cho, Tokushima 771-0192, Japan.
Genomics Proteomics Bioinformatics. 2006 Nov;4(4):238-44. doi: 10.1016/S1672-0229(07)60004-7.
Understanding the coupling specificity between G protein-coupled receptors (GPCRs) and specific classes of G proteins is important for further elucidation of receptor functions within a cell. Increasing information on GPCR sequences and the G protein family would facilitate prediction of the coupling properties of GPCRs. In this study, we describe a novel approach for predicting the coupling specificity between GPCRs and G proteins. This method uses not only GPCR sequences but also the functional knowledge generated by natural language processing, and can achieve 92.2% prediction accuracy by using the C4.5 algorithm. Furthermore, rules related to GPCR-G protein coupling are generated. The combination of sequence analysis and text mining improves the prediction accuracy for GPCR-G protein coupling specificity, and also provides clues for understanding GPCR signaling.
了解G蛋白偶联受体(GPCRs)与特定类型G蛋白之间的偶联特异性,对于进一步阐明细胞内受体功能至关重要。关于GPCR序列和G蛋白家族的信息不断增加,将有助于预测GPCR的偶联特性。在本研究中,我们描述了一种预测GPCR与G蛋白之间偶联特异性的新方法。该方法不仅使用GPCR序列,还利用自然语言处理生成的功能知识,通过使用C4.5算法可实现92.2%的预测准确率。此外,还生成了与GPCR-G蛋白偶联相关的规则。序列分析与文本挖掘相结合提高了GPCR-G蛋白偶联特异性的预测准确率,也为理解GPCR信号传导提供了线索。