Cedano Juan, Huerta Mario, Estrada Irene, Ballllosera Frederic, Conchillo Oscar, Delicado Pedro, Querol Enrique
Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biología Molecular, UAB, Spain.
Comput Biol Med. 2007 Nov;37(11):1672-5. doi: 10.1016/j.compbiomed.2007.03.008. Epub 2007 May 25.
This application aims at assisting researchers with the extraction of significant medical and biological knowledge from data sets with complex relationships among their variables.
Non-hypothesis-driven approaches like Principal Curves of Oriented Points (PCOP) are a very suitable method for this objective. PCOP allows for obtaining of a representative pattern from a huge quantity of data of independent variables in a very flexible and direct way. A web server has been designed to automatically realize 'non-linear pattern' analysis, 'hidden-variable-dependent' clustering, and new samples 'local-dispersion-dependent' classification from the data involving new statistical techniques using the PCOP calculus. The tools facilitate the managing, comparison and visualization of results in a user-friendly graphical interface.
本应用旨在帮助研究人员从变量间关系复杂的数据集中提取重要的医学和生物学知识。
像定向点主曲线(PCOP)这样的非假设驱动方法非常适合这一目标。PCOP能够以非常灵活和直接的方式从大量自变量数据中获得代表性模式。已设计了一个网络服务器,以使用PCOP演算自动从涉及新统计技术的数据中实现“非线性模式”分析、“隐变量相关”聚类以及新样本的“局部离散相关”分类。这些工具通过用户友好的图形界面促进结果的管理、比较和可视化。