Frankel Matthew B, Mordue Dana G, Knoll Laura J
Department of Medical Microbiology and Immunology, University of Wisconsin, 1300 University Avenue, Madison, WI 53706, USA.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10181-6. doi: 10.1073/pnas.0701893104. Epub 2007 May 29.
Eukaryotic parasites are a leading cause of morbidity and mortality worldwide, yet little is known about the genetic basis of their virulence. Here, we present a forward genetic screen to study pathogenesis in the protozoan parasite Toxoplasma gondii. By using modified signature-tagged mutagenesis, the growth of 6,300 T. gondii insertional mutants was compared in cell culture and murine infection to identify genes required specifically in vivo. One of the 39 avirulent mutants is disrupted in a divergent ortholog of the regulator of chromosome condensation 1 (RCC1), which is critical for nuclear trafficking in model systems. Although this RCC1 mutant grows similar to wild type in standard tissue culture conditions, it is growth-impaired under nutrient limitation. Genetic complementation of mutant parasites with the T. gondii RCC1 gene fully restores both virulence in mice and growth under low-nutrient conditions. Further analysis shows that there is a significant defect in nuclear trafficking in the RCC1 mutant. These findings suggest that the rate of nuclear transport is a critical factor affecting growth in low-nutrient conditions in vivo and in vitro. Additionally, we observed that although RCC1 proteins are highly conserved in organisms from humans to yeast, no protozoan parasite encodes a characteristic RCC1. This protein divergence may represent a unique mechanism of nucleocytoplasmic transport. This study illustrates the power of this forward genetics approach to identify atypical virulence mechanisms.
真核寄生虫是全球发病和死亡的主要原因,然而对其毒力的遗传基础却知之甚少。在此,我们展示了一种正向遗传学筛选方法,用于研究原生动物寄生虫刚地弓形虫的发病机制。通过使用改良的签名标签诱变技术,在细胞培养和小鼠感染模型中比较了6300个刚地弓形虫插入突变体的生长情况,以鉴定在体内特异性需要的基因。39个无毒突变体中的一个在染色体凝聚调节因子1(RCC1)的一个不同直系同源物中发生了破坏,RCC1在模型系统中对核运输至关重要。尽管这个RCC1突变体在标准组织培养条件下的生长与野生型相似,但在营养限制条件下其生长受到损害。用刚地弓形虫RCC1基因对突变寄生虫进行基因互补,可完全恢复小鼠体内的毒力和低营养条件下的生长。进一步分析表明,RCC1突变体在核运输方面存在显著缺陷。这些发现表明,核运输速率是影响体内外低营养条件下生长的关键因素。此外,我们观察到,尽管RCC1蛋白在从人类到酵母的生物体中高度保守,但没有原生动物寄生虫编码典型的RCC1。这种蛋白质差异可能代表了一种独特的核质运输机制。这项研究说明了这种正向遗传学方法在识别非典型毒力机制方面的作用。