Joshi Mahesh S, Ferguson T Bruce, Johnson Fruzsina K, Johnson Robert A, Parthasarathy Sampath, Lancaster Jack R
Department of Surgery, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):9982-7. doi: 10.1073/pnas.0506824104. Epub 2007 May 29.
Arginine contains the guanidinium group and thus has structural similarity to ligands of imidazoline and alpha-2 adrenoceptors (alpha-2 AR). Therefore, we investigated the possibility that exogenous arginine may act as a ligand for these receptors in human umbilical vein endothelial cells and activate intracellular nitric oxide (NO) synthesis. Idazoxan, a mixed antagonist of imidazoline and alpha-2 adrenoceptors, partly inhibited L-arginine-initiated NO formation as measured by a Griess reaction. Rauwolscine, a highly specific antagonist of alpha-2 AR, at very low concentrations completely inhibited NO formation. Like L-arginine, agmatine (decarboxylated arginine) also activated NO synthesis, however, at much lower concentrations. We found that dexmedetomidine, a specific agonist of alpha-2 AR was very potent in activating cellular NO, thus indicating a possible role for alpha-2 AR in L-arginine-mediated NO synthesis. D-arginine also activated NO production and could be inhibited by imidazoline and alpha-2 AR antagonists, thus indicating nonsubstrate actions of arginine. Pertussis toxin, an inhibitor of G proteins, attenuated L-arginine-mediated NO synthesis, thus indicating mediation via G proteins. L-type Ca(2+) channel blocker nifedipine and phospholipase C inhibitor U73122 inhibited NO formation and thus implicated participation of a second messenger pathway. Finally, in isolated rat gracilis vessels, rauwolscine completely inhibited the L-arginine-initiated vessel relaxation. Taken together, these data provide evidence for binding of arginine to membrane receptor(s), leading to the activation of endothelial NO synthase (eNOS) NO production through a second messenger pathway. These findings provide a previously unrecognized mechanistic explanation for the beneficial effects of L-arginine in the cardiovascular system and thus provide new potential avenues for therapeutic development.
精氨酸含有胍基,因此在结构上与咪唑啉和α-2肾上腺素能受体(α-2AR)的配体相似。因此,我们研究了外源性精氨酸是否可能作为这些受体在人脐静脉内皮细胞中的配体,并激活细胞内一氧化氮(NO)的合成。咪唑啉和α-2肾上腺素能受体的混合拮抗剂伊达唑胺,部分抑制了通过格里斯反应测定的L-精氨酸引发的NO形成。α-2AR的高度特异性拮抗剂育亨宾,在非常低的浓度下完全抑制了NO的形成。与L-精氨酸一样,胍丁胺(脱羧精氨酸)也能激活NO合成,然而,所需浓度要低得多。我们发现,α-2AR的特异性激动剂右美托咪定在激活细胞内NO方面非常有效,因此表明α-2AR在L-精氨酸介导的NO合成中可能发挥作用。D-精氨酸也能激活NO的产生,并且可以被咪唑啉和α-2AR拮抗剂抑制,因此表明精氨酸具有非底物作用。百日咳毒素是一种G蛋白抑制剂,减弱了L-精氨酸介导的NO合成,因此表明是通过G蛋白介导的。L型钙通道阻滞剂硝苯地平和磷脂酶C抑制剂U73122抑制了NO的形成,因此表明有第二信使途径参与。最后,在离体大鼠股薄肌血管中,育亨宾完全抑制了L-精氨酸引发的血管舒张。综上所述,这些数据为精氨酸与膜受体结合提供了证据,通过第二信使途径导致内皮型一氧化氮合酶(eNOS)激活并产生NO。这些发现为L-精氨酸在心血管系统中的有益作用提供了一个以前未被认识的机制解释,从而为治疗开发提供了新的潜在途径。