Yang Taiseung, Spilker Robert L
Department of Mechanical, Aeronautical and Nuclear Engineering, and Scientific Computation Research Center, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
J Biomech Eng. 2007 Jun;129(3):457-71. doi: 10.1115/1.2737056.
A three-dimensional (3D) contact finite element formulation has been developed for biological soft tissue-to-tissue contact analysis. The linear biphasic theory of Mow, Holmes, and Lai (1984, J. Biomech., 17(5), pp. 377-394) based on continuum mixture theory, is adopted to describe the hydrated soft tissue as a continuum of solid and fluid phases. Four contact continuity conditions derived for biphasic mixtures by Hou et al. (1989, ASME J. Biomech. Eng., 111(1), pp. 78-87) are introduced on the assumed contact surface, and a weighted residual method has been used to derive a mixed velocity-pressure finite element contact formulation. The Lagrange multiplier method is used to enforce two of the four contact continuity conditions, while the other two conditions are introduced directly into the weighted residual statement. Alternate formulations are possible, which differ in the choice of continuity conditions that are enforced with Lagrange multipliers. Primary attention is focused on a formulation that enforces the normal solid traction and relative fluid flow continuity conditions on the contact surface using Lagrange multipliers. An alternate approach, in which the multipliers enforce normal solid traction and pressure continuity conditions, is also discussed. The contact nonlinearity is treated with an iterative algorithm, where the assumed area is either extended or reduced based on the validity of the solution relative to contact conditions. The resulting first-order system of equations is solved in time using the generalized finite difference scheme. The formulation is validated by a series of increasingly complex canonical problems, including the confined and unconfined compression, the Hertz contact problem, and two biphasic indentation tests. As a clinical demonstration of the capability of the contact analysis, the gleno-humeral joint contact of human shoulders is analyzed using an idealized 3D geometry. In the joint, both glenoid and humeral head cartilage experience maximum tensile and compressive stresses are at the cartilage-bone interface, away from the center of the contact area.
已开发出一种三维(3D)接触有限元公式,用于生物软组织与组织之间的接触分析。基于连续介质混合理论的Mow、Holmes和Lai(1984年,《生物力学杂志》,17(5),第377 - 394页)的线性双相理论,被用于将含水软组织描述为固相和液相的连续介质。Hou等人(1989年,《美国机械工程师学会生物力学工程杂志》,111(1),第78 - 87页)为双相混合物推导的四个接触连续性条件,被引入到假定的接触表面上,并且采用加权残值法推导了一种混合速度 - 压力有限元接触公式。拉格朗日乘子法用于强制实施四个接触连续性条件中的两个,而另外两个条件则直接引入加权残值表述中。也可以有其他的公式,它们在使用拉格朗日乘子强制实施的连续性条件的选择上有所不同。主要关注的是一种使用拉格朗日乘子在接触表面强制实施法向固体牵引力和相对流体流动连续性条件的公式。还讨论了另一种方法,即乘子强制实施法向固体牵引力和压力连续性条件。接触非线性用迭代算法处理,其中根据解相对于接触条件的有效性,对假定面积进行扩大或缩小。所得的一阶方程组使用广义有限差分格式进行时间求解。该公式通过一系列日益复杂的典型问题进行了验证,包括受限和无受限压缩、赫兹接触问题以及两个双相压痕试验。作为接触分析能力的临床演示,使用理想化的三维几何形状对人体肩部的盂肱关节接触进行了分析。在关节中,肩胛盂和肱骨头软骨的最大拉伸和压缩应力都出现在软骨 - 骨界面处,远离接触区域的中心。