Leitner Alexander, Foettinger Alexandra, Lindner Wolfgang
Department of Analytical Chemistry and Food Chemistry, University of Vienna, Waehringer Strasse 38, 1090 Vienna, Austria.
J Mass Spectrom. 2007 Jul;42(7):950-9. doi: 10.1002/jms.1233.
Despite significant technological and methodological advancements in peptide sequencing by mass spectrometry, analyzing peptides that exhibit only poor fragmentation upon collision-induced dissociation (CID) remains a challenge. A major cause for unfavorable fragmentation is insufficient proton 'mobility' due to charge localization at strongly basic sites, in particular, the guanidine group of arginine. We have recently demonstrated that the conversion of the guanidine group of the arginine side chain by malondialdehyde (MDA) is a convenient tool to reduce the basicity of arginine residues and can have beneficial effects for peptide fragmentation. In the present work, we have focused on peptides that typically yield incomplete sequence information in CID-MS/MS experiments. Energy-resolved tandem MS experiments were carried out on angiotensins and arginine-containing phosphopeptides to study in detail the influence of the modification step on the fragmentation process. MDA modification dramatically improved the fragmentation behavior of peptides that exhibited only one or two dominant cleavages in their unmodified form. Neutral loss of phosphoric acid from phosphopeptides carrying phosphoserine and threonine residues was significantly reduced in favor of a higher abundance of fragment ions. Complementary experiments were carried out on three different instrumental platforms (triple-quadrupole, 3D ion trap, quadrupole-linear ion trap hybrid) to ascertain that the observation is a general effect.
尽管在通过质谱进行肽测序方面取得了重大的技术和方法进步,但分析在碰撞诱导解离(CID)时仅表现出较差碎片化的肽仍然是一项挑战。碎片化不理想的一个主要原因是由于质子在强碱性位点(特别是精氨酸的胍基)处电荷定位导致质子“迁移率”不足。我们最近证明,丙二醛(MDA)对精氨酸侧链胍基的转化是一种降低精氨酸残基碱性的便捷工具,并且对肽的碎片化可能具有有益效果。在本工作中,我们专注于在CID-MS/MS实验中通常产生不完整序列信息的肽。对血管紧张素和含精氨酸的磷酸肽进行了能量分辨串联质谱实验,以详细研究修饰步骤对碎片化过程的影响。MDA修饰显著改善了在未修饰形式下仅表现出一两个主要裂解的肽的碎片化行为。携带磷酸丝氨酸和苏氨酸残基的磷酸肽中磷酸的中性丢失显著减少,有利于更高丰度的碎片离子。在三种不同的仪器平台(三重四极杆、三维离子阱、四极杆-线性离子阱混合仪)上进行了补充实验,以确定该观察结果是一种普遍效应。