Suppr超能文献

Quasi-isochoric superheating of nanoparticles embedded in rigid matrixes.

作者信息

Yang C C, Li S

机构信息

School of Materials Science and Engineering, The University of New South Wales, NSW, Australia.

出版信息

J Phys Chem B. 2007 Jun 28;111(25):7318-20. doi: 10.1021/jp072010t. Epub 2007 Jun 1.

Abstract

A thermodynamic model for pressure-induced quasi-isochoric superheating of nanoparticles embedded in rigid matrixes was established quantitatively by introducing the size dependence of melting enthalpy. The accuracy of the developed model was verified with the reported experimental data of Sn and Pb nanoparticles encapsulated in fullerene-like graphitic shells (FGS) as well as Ge nanoparticles embedded in SiO2. The mechanism behind the smaller superheating for Al nanoparticles embedded in Al2O3 was also studied. It was found that the extent of the superheating is determined by the pressure, which is in turn related to the confinement effect and to the size of the nanoparticles. Through the knowledge obtained in this study, it can be concluded that the extreme superheating of nanoparticles can be achieved on the proviso that they are encased in a sufficiently rigid matrix, while the size of nanoparticles is small enough.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验