Suppr超能文献

内耳中的离子通道基因表达。

Ion channel gene expression in the inner ear.

作者信息

Gabashvili Irene S, Sokolowski Bernd H A, Morton Cynthia C, Giersch Anne B S

机构信息

Hewlett-Packard Labs, 1501 Page Mill Road, Palo Alto, CA 94304, USA.

出版信息

J Assoc Res Otolaryngol. 2007 Sep;8(3):305-28. doi: 10.1007/s10162-007-0082-y. Epub 2007 Jun 1.

Abstract

The ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels. We mapped over 100,000 expressed sequence tags (ESTs) derived from human cochlea, mouse organ of Corti, mouse and zebrafish inner ear, and rat vestibular end organs to Homo sapiens, Mus musculus, Danio rerio, and Rattus norvegicus genomes. A survey of EST data alone reveals that at least a third of the ion channel genome is expressed in the inner ear, with highest expression occurring in hair cell-enriched mouse organ of Corti and rat vestibule. Our data and comparisons with other experimental techniques that measure gene expression show that every method has its limitations and does not per se provide a complete coverage of the inner ear ion channelome. In addition, the data show that most genes produce alternative transcripts with the same spectrum across multiple organisms, no ion channel gene variants are unique to the inner ear, and many splice variants have yet to be annotated. Our high-throughput approach offers a qualitative computational and experimental analysis of ion channel genes in inner ear cDNA collections. A lack of data and incomplete gene annotations prevent both rigorous statistical analyses and comparisons of entire ion channelomes derived from different tissues and organisms.

摘要

尽管已有大量关于离子通道基因组的文献发表,但离子通道基因组仍有待明确。离子通道转录组的评估则更加困难。我们使用高通量计算工具,对所有可用的内耳cDNA文库进行了调查,以鉴定编码离子通道的基因。我们将来自人类耳蜗、小鼠柯蒂氏器、小鼠和斑马鱼内耳以及大鼠前庭终器的超过100,000个表达序列标签(EST)定位到人类、小鼠、斑马鱼和大鼠的基因组上。仅对EST数据的调查就显示,至少三分之一的离子通道基因组在内耳中表达,在富含毛细胞的小鼠柯蒂氏器和大鼠前庭中表达最高。我们的数据以及与其他测量基因表达的实验技术的比较表明,每种方法都有其局限性,本身并不能完全覆盖内耳离子通道组。此外,数据显示大多数基因在多种生物体中产生具有相同谱型但不同的转录本,没有离子通道基因变体是内耳特有的,并且许多剪接变体尚未得到注释。我们的高通量方法对内耳cDNA文库中的离子通道基因进行了定性的计算和实验分析。数据的缺乏和基因注释的不完整阻碍了对来自不同组织和生物体的整个离子通道组进行严格的统计分析和比较。

相似文献

1
Ion channel gene expression in the inner ear.
J Assoc Res Otolaryngol. 2007 Sep;8(3):305-28. doi: 10.1007/s10162-007-0082-y. Epub 2007 Jun 1.
3
Characterisation of DRASIC in the mouse inner ear.
Hear Res. 2004 Apr;190(1-2):149-60. doi: 10.1016/S0378-5955(04)00015-2.
5
Probing the Xenopus laevis inner ear transcriptome for biological function.
BMC Genomics. 2012 Jun 8;13:225. doi: 10.1186/1471-2164-13-225.
7
A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear.
Hear Res. 2016 Mar;333:266-274. doi: 10.1016/j.heares.2015.08.013. Epub 2015 Sep 1.
10
Localization of efferent neurotransmitters in the inner ear of the homozygous Bronx waltzer mutant mouse.
Hear Res. 2002 May;167(1-2):136-55. doi: 10.1016/s0378-5955(02)00382-9.

引用本文的文献

2
Novel Transgenic Zebrafish Lines to Study the CHRNA3-B4-A5 Gene Cluster.
Dev Neurobiol. 2025 Jan;85(1):e22956. doi: 10.1002/dneu.22956.
3
Potassium Ion Channels in Malignant Central Nervous System Cancers.
Cancers (Basel). 2022 Sep 29;14(19):4767. doi: 10.3390/cancers14194767.
4
Generative Models of Brain Dynamics.
Front Artif Intell. 2022 Jul 15;5:807406. doi: 10.3389/frai.2022.807406. eCollection 2022.
5
iCDI-W2vCom: Identifying the Ion Channel-Drug Interaction in Cellular Networking Based on word2vec and node2vec.
Front Genet. 2021 Sep 9;12:738274. doi: 10.3389/fgene.2021.738274. eCollection 2021.
6
GWAS and gene networks for milk-related traits from test-day multiple lactations in Portuguese Holstein cattle.
J Appl Genet. 2020 Sep;61(3):465-476. doi: 10.1007/s13353-020-00567-3. Epub 2020 Jul 1.
7
Transcriptomic Analyses of Inner Ear Sensory Epithelia in Zebrafish.
Anat Rec (Hoboken). 2020 Mar;303(3):527-543. doi: 10.1002/ar.24331. Epub 2019 Dec 28.
8
Predicting Ion Channels Genes and Their Types With Machine Learning Techniques.
Front Genet. 2019 May 3;10:399. doi: 10.3389/fgene.2019.00399. eCollection 2019.
9
Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping.
Adv Funct Mater. 2017 Oct 19;27(39). doi: 10.1002/adfm.201700489. Epub 2017 Aug 14.
10
Developmental Synaptic Changes at the Transient Olivocochlear-Inner Hair Cell Synapse.
J Neurosci. 2019 May 1;39(18):3360-3375. doi: 10.1523/JNEUROSCI.2746-18.2019. Epub 2019 Feb 12.

本文引用的文献

1
Ion channels as a target for drug design.
Curr Pharm Des. 2007;13(31):3168. doi: 10.2174/138161207782341312.
2
TRP channels as candidates for hearing and balance abnormalities in vertebrates.
Biochim Biophys Acta. 2007 Aug;1772(8):1022-7. doi: 10.1016/j.bbadis.2007.01.002. Epub 2007 Jan 17.
3
Cochlear function in mice lacking the BK channel alpha, beta1, or beta4 subunits.
J Biol Chem. 2007 Feb 2;282(5):3312-24. doi: 10.1074/jbc.M608726200. Epub 2006 Nov 29.
4
Conserved motifs in voltage-sensing and pore-forming modules of voltage-gated ion channel proteins.
Biochem Biophys Res Commun. 2007 Jan 12;352(2):292-8. doi: 10.1016/j.bbrc.2006.10.190. Epub 2006 Nov 13.
5
Diversity of Ca2+-activated K+ channel transcripts in inner ear hair cells.
Gene. 2007 Jan 15;386(1-2):11-23. doi: 10.1016/j.gene.2006.07.023. Epub 2006 Aug 5.
6
Developmental changes in two voltage-dependent sodium currents in utricular hair cells.
J Neurophysiol. 2007 Feb;97(2):1684-704. doi: 10.1152/jn.00649.2006. Epub 2006 Oct 25.
7
Signatures from tissue-specific MPSS libraries identify transcripts preferentially expressed in the mouse inner ear.
Genomics. 2007 Feb;89(2):197-206. doi: 10.1016/j.ygeno.2006.09.006. Epub 2006 Oct 17.
10
Acid-sensing ion channel-1b in the stereocilia of mammalian cochlear hair cells.
Neuroreport. 2006 Aug 21;17(12):1235-9. doi: 10.1097/01.wnr.0000233093.67289.66.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验