Kumar Anil, Tan Aaron, Wong Joanna, Spagnoli Jonathan Clayton, Lam James, Blevins Brianna Diane, G Natasha, Thorne Lewis, Ashkan Keyoumars, Xie Jin, Liu Hong
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.
UCL Medical School, University College London (UCL), London, United Kingdom.
Adv Funct Mater. 2017 Oct 19;27(39). doi: 10.1002/adfm.201700489. Epub 2017 Aug 14.
Unlocking the secrets of the brain is a task fraught with complexity and challenge - not least due to the intricacy of the circuits involved. With advancements in the scale and precision of scientific technologies, we are increasingly equipped to explore how these components interact to produce a vast range of outputs that constitute function and disease. Here, an insight is offered into key areas in which the marriage of neuroscience and nanotechnology has revolutionized the industry. The evolution of ever more sophisticated nanomaterials culminates in network-operant functionalized agents. In turn, these materials contribute to novel diagnostic and therapeutic strategies, including drug delivery, neuroprotection, neural regeneration, neuroimaging and neurosurgery. Further, the entrance of nanotechnology into future research arenas including optogenetics, molecular/ion sensing and monitoring, and piezoelectric effects is discussed. Finally, considerations in nanoneurotoxicity, the main barrier to clinical translation, are reviewed, and direction for future perspectives is provided.
揭开大脑的奥秘是一项充满复杂性和挑战的任务——尤其是因为所涉及的神经回路错综复杂。随着科学技术在规模和精度上的进步,我们越来越有能力探索这些组件如何相互作用,以产生构成功能和疾病的大量输出。在此,我们深入了解神经科学与纳米技术的结合如何彻底改变该领域的关键领域。越来越复杂的纳米材料不断发展,最终形成了具有网络活性的功能化试剂。反过来,这些材料有助于开发新的诊断和治疗策略,包括药物递送、神经保护、神经再生、神经成像和神经外科手术。此外,还讨论了纳米技术进入未来研究领域的情况,包括光遗传学、分子/离子传感与监测以及压电效应。最后,回顾了临床转化的主要障碍——纳米神经毒性方面的考虑因素,并提供了未来展望的方向。