Suppr超能文献

用于神经科学的纳米技术:诊断、治疗及脑活动图谱绘制的前景方法

Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping.

作者信息

Kumar Anil, Tan Aaron, Wong Joanna, Spagnoli Jonathan Clayton, Lam James, Blevins Brianna Diane, G Natasha, Thorne Lewis, Ashkan Keyoumars, Xie Jin, Liu Hong

机构信息

State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China.

UCL Medical School, University College London (UCL), London, United Kingdom.

出版信息

Adv Funct Mater. 2017 Oct 19;27(39). doi: 10.1002/adfm.201700489. Epub 2017 Aug 14.

Abstract

Unlocking the secrets of the brain is a task fraught with complexity and challenge - not least due to the intricacy of the circuits involved. With advancements in the scale and precision of scientific technologies, we are increasingly equipped to explore how these components interact to produce a vast range of outputs that constitute function and disease. Here, an insight is offered into key areas in which the marriage of neuroscience and nanotechnology has revolutionized the industry. The evolution of ever more sophisticated nanomaterials culminates in network-operant functionalized agents. In turn, these materials contribute to novel diagnostic and therapeutic strategies, including drug delivery, neuroprotection, neural regeneration, neuroimaging and neurosurgery. Further, the entrance of nanotechnology into future research arenas including optogenetics, molecular/ion sensing and monitoring, and piezoelectric effects is discussed. Finally, considerations in nanoneurotoxicity, the main barrier to clinical translation, are reviewed, and direction for future perspectives is provided.

摘要

揭开大脑的奥秘是一项充满复杂性和挑战的任务——尤其是因为所涉及的神经回路错综复杂。随着科学技术在规模和精度上的进步,我们越来越有能力探索这些组件如何相互作用,以产生构成功能和疾病的大量输出。在此,我们深入了解神经科学与纳米技术的结合如何彻底改变该领域的关键领域。越来越复杂的纳米材料不断发展,最终形成了具有网络活性的功能化试剂。反过来,这些材料有助于开发新的诊断和治疗策略,包括药物递送、神经保护、神经再生、神经成像和神经外科手术。此外,还讨论了纳米技术进入未来研究领域的情况,包括光遗传学、分子/离子传感与监测以及压电效应。最后,回顾了临床转化的主要障碍——纳米神经毒性方面的考虑因素,并提供了未来展望的方向。

相似文献

1
Nanotechnology for Neuroscience: Promising Approaches for Diagnostics, Therapeutics and Brain Activity Mapping.
Adv Funct Mater. 2017 Oct 19;27(39). doi: 10.1002/adfm.201700489. Epub 2017 Aug 14.
2
Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering.
Acc Chem Res. 2024 Jun 4;57(11):1633-1647. doi: 10.1021/acs.accounts.4c00163. Epub 2024 May 16.
3
Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience.
Biomed Eng Online. 2023 Jan 2;22(1):1. doi: 10.1186/s12938-022-01062-y.
4
Neurophotonics: a comprehensive review, current challenges and future trends.
Front Neurosci. 2024 May 3;18:1382341. doi: 10.3389/fnins.2024.1382341. eCollection 2024.
5
Programmable DNA Nanodevices for Applications in Neuroscience.
ACS Chem Neurosci. 2021 Feb 3;12(3):363-377. doi: 10.1021/acschemneuro.0c00723. Epub 2021 Jan 12.
7
Nanotechnology in neurosurgery: thinking small, dreaming big.
Br J Neurosurg. 2017 Oct;31(5):538-550. doi: 10.1080/02688697.2017.1327017. Epub 2017 May 24.
8
Neurosurgery in the realm of 10(-9), part 1: stardust and nanotechnology in neuroscience.
Neurosurgery. 2008 Jan;62(1):1-20. doi: 10.1227/01.NEU.0000311058.80249.6B.
9
Gold nanostructures: synthesis, properties, and neurological applications.
Chem Soc Rev. 2022 Apr 4;51(7):2601-2680. doi: 10.1039/d1cs01111a.
10
Nanoengineered Templated Polymer Particles: Navigating the Biological Realm.
Acc Chem Res. 2016 Jun 21;49(6):1139-48. doi: 10.1021/acs.accounts.6b00088. Epub 2016 May 20.

引用本文的文献

1
Plasmalogen as a Bioactive Lipid Drug: From Preclinical Research Challenges to Opportunities in Nanomedicine.
FASEB Bioadv. 2025 Jun 4;7(8):e70028. doi: 10.1096/fba.2025-00010. eCollection 2025 Aug.
3
Nanographene-Based Polymeric Nanoparticles as Near-Infrared Emissive Neuronal Tracers.
ACS Nano. 2024 Dec 24;18(51):34730-34740. doi: 10.1021/acsnano.4c10754. Epub 2024 Dec 12.
4
Nanomaterial-assisted oncolytic bacteria in solid tumor diagnosis and therapeutics.
Bioeng Transl Med. 2024 Apr 17;9(4):e10672. doi: 10.1002/btm2.10672. eCollection 2024 Jul.
5
Nanoneuroscience: Cutting-edge Approach for Disease Management.
Recent Pat Nanotechnol. 2024;18(2):305-320. doi: 10.2174/1872210517666230403105152.
6
Wearable sensors for monitoring marine environments and their inhabitants.
Nat Biotechnol. 2023 Sep;41(9):1208-1220. doi: 10.1038/s41587-023-01827-3. Epub 2023 Jun 26.
7
Neuro-nanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience.
Biomed Eng Online. 2023 Jan 2;22(1):1. doi: 10.1186/s12938-022-01062-y.
8
Polymeric nanoparticles for dopamine and levodopa replacement in Parkinson's disease.
Nanoscale Adv. 2022 Nov 3;4(24):5233-5244. doi: 10.1039/d2na00524g. eCollection 2022 Dec 6.
9
TEGylated Double-Walled Carbon Nanotubes as Platforms to Engineer Neuronal Networks.
ACS Appl Mater Interfaces. 2023 Jan 11;15(1):77-90. doi: 10.1021/acsami.2c16808. Epub 2022 Oct 21.
10
Nanotechnology and quantum science enabled advances in neurological medical applications: diagnostics and treatments.
Med Biol Eng Comput. 2022 Dec;60(12):3341-3356. doi: 10.1007/s11517-022-02664-3. Epub 2022 Oct 8.

本文引用的文献

1
Self-Assembling Peptide Nanofiber Scaffolds for 3-D Reprogramming and Transplantation of Human Pluripotent Stem Cell-Derived Neurons.
ACS Biomater Sci Eng. 2016 Jun 13;2(6):1030-1038. doi: 10.1021/acsbiomaterials.6b00156. Epub 2016 May 4.
2
State-of-the-art MEMS and microsystem tools for brain research.
Microsyst Nanoeng. 2017 Jan 2;3:16066. doi: 10.1038/micronano.2016.66. eCollection 2017.
3
Nanoparticles in the clinic.
Bioeng Transl Med. 2016 Jun 3;1(1):10-29. doi: 10.1002/btm2.10003. eCollection 2016 Mar.
4
Increased Gold Nanoparticle Retention in Brain Tumors by in Situ Enzyme-Induced Aggregation.
ACS Nano. 2016 Nov 22;10(11):10086-10098. doi: 10.1021/acsnano.6b05070. Epub 2016 Nov 11.
5
Graphene Encapsulated Copper Microwires as Highly MRI Compatible Neural Electrodes.
Nano Lett. 2016 Dec 14;16(12):7731-7738. doi: 10.1021/acs.nanolett.6b03829. Epub 2016 Nov 17.
6
Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective.
Adv Pharm Bull. 2016 Sep;6(3):319-335. doi: 10.15171/apb.2016.044. Epub 2016 Sep 25.
7
Cerium Oxide Nanoparticles Improve Outcome after and Mild Traumatic Brain Injury.
J Neurotrauma. 2020 Jun 15;37(12):1452-1462. doi: 10.1089/neu.2016.4644. Epub 2016 Nov 2.
9
Enhanced Migration of Neural Stem Cells by Microglia Grown on a Three-Dimensional Graphene Scaffold.
ACS Appl Mater Interfaces. 2016 Sep 28;8(38):25069-77. doi: 10.1021/acsami.6b06780. Epub 2016 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验