Gansner John M, Mendelsohn Bryce A, Hultman Keith A, Johnson Stephen L, Gitlin Jonathan D
Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
Dev Biol. 2007 Jul 15;307(2):202-13. doi: 10.1016/j.ydbio.2007.04.029. Epub 2007 May 1.
Recent studies reveal a critical role for copper in the development of the zebrafish notochord, suggesting that specific cuproenzymes are required for the structural integrity of the notochord sheath. We now demonstrate that beta-aminopropionitrile, a known inhibitor of the copper-dependent lysyl oxidases, causes notochord distortion in the zebrafish embryo identical to that seen in copper deficiency. Characterization of the zebrafish lysyl oxidase genes reveals eight unique sequences, several of which are expressed in the developing notochord. Specific gene knockdown demonstrates that loss of loxl1 results in notochord distortion, and that loxl1 and loxl5b have overlapping roles in notochord formation. Interestingly, while notochord abnormalities are not observed following partial knockdown of loxl1 or loxl5b alone, in each case this markedly sensitizes developing embryos to notochord distortion if copper availability is diminished. Likewise, partial knockdown of the lysyl oxidase substrate col2a1 results in notochord distortion when combined with reduced copper availability or partial knockdown of loxl1 or loxl5b. These data reveal a complex interplay of gene expression and nutrient availability critical to notochord development. They also provide insight into specific genetic and nutritional factors that may play a role in the pathogenesis of structural birth defects of the axial skeleton.
近期研究揭示了铜在斑马鱼脊索发育过程中的关键作用,这表明脊索鞘的结构完整性需要特定的铜酶。我们现在证明,β-氨基丙腈是一种已知的铜依赖性赖氨酰氧化酶抑制剂,它会导致斑马鱼胚胎中的脊索变形,与铜缺乏时所见的情况相同。对斑马鱼赖氨酰氧化酶基因的表征揭示了八个独特序列,其中几个在发育中的脊索中表达。特异性基因敲低表明,loxl1的缺失会导致脊索变形,并且loxl1和loxl5b在脊索形成中具有重叠作用。有趣的是,虽然单独部分敲低loxl1或loxl5b后未观察到脊索异常,但在每种情况下,如果铜的可利用性降低,这会使发育中的胚胎对脊索变形明显敏感。同样,当与铜可利用性降低或loxl1或loxl5b的部分敲低相结合时,赖氨酰氧化酶底物col2a1的部分敲低会导致脊索变形。这些数据揭示了基因表达与营养可利用性之间复杂的相互作用,这对脊索发育至关重要。它们还为可能在轴向骨骼结构出生缺陷发病机制中起作用的特定遗传和营养因素提供了见解。