Chen Kun, Shan Michael
Global Biometric Science, Pharmaceutical Research Institute, Bristol Myers Squibb Company, 5 Research Parkway, Wallingford, CT 06492, USA.
Contemp Clin Trials. 2008 Jan;29(1):32-41. doi: 10.1016/j.cct.2007.04.008. Epub 2007 May 6.
The common objective of oncology phase II trials is to evaluate the anti-tumor activity of a new agent and to determine whether the new drug warrants further investigation. For cancer drugs that significantly shrink tumors, response (CR and PR) rate is usually the primary endpoint in cancer phase II trials for testing H(0): P<or=P(0) vs H(1): P>or=P(1), where P(0) and P(1) are response rates which does not or does warrant further investigation given the rate of false positive (alpha) and false negative (beta). Multiple-stage designs including two-stage and three-stage have been developed by several authors. For example, Simon's optimal two-stage design [Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials 1989;10:1-10], Ensign et al. optimal three-stage design with restriction at the first stage [Ensign LG, Gehan EA, Kamen DS, Thall PF. An optimal three-stage design for phase II clinical trials. Stat Med 1994;13:1727-1736], Chen's optimal three-stage design without any restriction [Chen TT. Optimal three-stage designs for phase II clinical trials. Stat Med 1997;16:2701-2711], etc. However, all the above designs only early terminate a trial due to lack of activity of the study drug. Fleming's multiple-stage design [Fleming TR. One-sample multiple testing procedure for phase II clinical trials. Biometrics 1982;38:143-151] allows early stopping for either sufficient activity or lack of activity. But his design does not attempt to optimize its efficiency. We extend Chen's [Chen TT. Optimal three-stage designs for phase II clinical trials Stat Med 1997;16:2701-2711] design and propose an optimal and a minimax design for three-stage cancer phase II trials which allows early stopping under both hypotheses. The design is optimal in the sense that the average sample number (ASN) is minimized under P=P(0). The minimax design minimizes the maximal sample size (N) and then given this value of N minimizes the average sample number under P=P(0).
肿瘤学II期试验的共同目标是评估一种新药物的抗肿瘤活性,并确定该新药是否值得进一步研究。对于能显著缩小肿瘤的癌症药物,缓解(完全缓解和部分缓解)率通常是癌症II期试验中的主要终点,用于检验原假设H(0): P≤P(0) 与备择假设H(1): P≥P(1),其中P(0) 和P(1) 分别是给定假阳性率(α)和假阴性率(β)时不值得或值得进一步研究的缓解率。多位作者开发了包括两阶段和三阶段在内的多阶段设计。例如,西蒙的最优两阶段设计[西蒙·R. 用于II期临床试验的最优两阶段设计。《控制临床试验》1989年;第10卷:第1 - 10页],恩赛因等人的在第一阶段有限制的最优三阶段设计[恩赛因·L.G., 盖汉·E.A., 卡门·D.S., 索尔·P.F. 用于II期临床试验的最优三阶段设计。《统计医学》1994年;第13卷:第1727 - 1736页],陈的无任何限制的最优三阶段设计[陈·T.T. 用于II期临床试验的最优三阶段设计。《统计医学》1997年;第16卷:第2701 - 2711页]等。然而,上述所有设计都只是因为研究药物缺乏活性而提前终止试验。弗莱明的多阶段设计[弗莱明·T.R. 用于II期临床试验的单样本多重检验程序。《生物统计学》1982年;第38卷:第143 - 151页]允许因有足够活性或缺乏活性而提前终止试验。但他的设计并未试图优化其效率。我们扩展了陈的[陈·T.T. 用于II期临床试验的最优三阶段设计。《统计医学》1997年;第16卷:第2701 - 2711页]设计,并提出了用于三阶段癌症II期试验的最优设计和极小极大设计,这两种设计在两种假设下都允许提前终止试验。该设计在P = P(0) 时平均样本量(ASN)最小的意义上是最优的。极小极大设计使最大样本量(N)最小化,然后在这个N值下使P = P(0) 时的平均样本量最小化。