Suppr超能文献

高斯过程在生物系统黑箱建模中的应用。

Application of Gaussian processes for black-box modelling of biosystems.

作者信息

Azman K, Kocijan J

机构信息

Jozef Stefan Institute, Department of Systems and Control, Jamova 39, 1000 Ljubljana, Slovenia.

出版信息

ISA Trans. 2007 Oct;46(4):443-57. doi: 10.1016/j.isatra.2007.04.001. Epub 2007 Jun 4.

Abstract

Different models can be used for nonlinear dynamic system identification and the Gaussian process model is a relatively new option with several interesting features: model predictions contain the measure of confidence, the model has a small number of training parameters and facilitated structure determination, and different possibilities of including prior knowledge exist. In this paper the framework for the identification of a dynamic system model based on Gaussian processes is shown, illustrated on a simulated bioreactor example and then applied to two case studies. The first one addresses modelling of the nitrification process in a wastewater treatment plant and the second models biomass growth in the Lagoon of Venice. Special emphasis is placed on model validation, an often underemphasised part of the identification procedure, where the Gaussian model prediction variance can be utilised.

摘要

不同的模型可用于非线性动态系统识别,高斯过程模型是一个相对较新的选择,具有几个有趣的特性:模型预测包含置信度度量,模型具有少量训练参数且便于结构确定,并且存在纳入先验知识的不同可能性。本文展示了基于高斯过程的动态系统模型识别框架,以一个模拟生物反应器示例进行说明,然后应用于两个案例研究。第一个案例涉及污水处理厂中硝化过程的建模,第二个案例是威尼斯潟湖生物量增长的建模。特别强调了模型验证,这是识别过程中经常被忽视的部分,其中可以利用高斯模型预测方差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验