Harris Diana M, van der Krogt Zita A, van Gulik Walter M, van Dijken Johannes P, Pronk Jack T
Delft University of Technology, Department of Biotechnology, Julianalaan 67, Delft, The Netherlands.
Appl Environ Microbiol. 2007 Aug;73(15):5020-5. doi: 10.1128/AEM.00093-07. Epub 2007 Jun 1.
Production of beta-lactams by the filamentous fungus Penicillium chrysogenum requires a substantial input of ATP. During glucose-limited growth, this ATP is derived from glucose dissimilation, which reduces the product yield on glucose. The present study has investigated whether penicillin G yields on glucose can be enhanced by cofeeding of an auxiliary substrate that acts as an energy source but not as a carbon substrate. As a model system, a high-producing industrial strain of P. chrysogenum was grown in chemostat cultures on mixed substrates containing different molar ratios of formate and glucose. Up to a formate-to-glucose ratio of 4.5 mol.mol(-1), an increasing rate of formate oxidation via a cytosolic NAD(+)-dependent formate dehydrogenase increasingly replaced the dissimilatory flow of glucose. This resulted in increased biomass yields on glucose. Since at these formate-to-glucose ratios the specific penicillin G production rate remained constant, the volumetric productivity increased. Metabolic modeling studies indicated that formate transport in P. chrysogenum does not require an input of free energy. At formate-to-glucose ratios above 4.5 mol.mol(-1), the residual formate concentrations in the cultures increased, probably due to kinetic constraints in the formate-oxidizing system. The accumulation of formate coincided with a loss of the coupling between formate oxidation and the production of biomass and penicillin G. These results demonstrate that, in principle, mixed-substrate feeding can be used to increase the yield on a carbon source of assimilatory products such as beta-lactams.
产黄青霉这种丝状真菌生产β-内酰胺需要大量的ATP输入。在葡萄糖受限的生长过程中,这种ATP来源于葡萄糖异化作用,这降低了葡萄糖的产物产量。本研究调查了通过共进料一种作为能源而非碳源的辅助底物,是否可以提高葡萄糖上青霉素G的产量。作为一个模型系统,一株高产的产黄青霉工业菌株在含有不同摩尔比甲酸盐和葡萄糖的混合底物的恒化器培养物中生长。在甲酸盐与葡萄糖的比例高达4.5 mol·mol⁻¹时,通过胞质NAD⁺依赖性甲酸脱氢酶进行的甲酸盐氧化速率增加,越来越多地取代了葡萄糖的异化流动。这导致葡萄糖上的生物量产量增加。由于在这些甲酸盐与葡萄糖的比例下,青霉素G的比生产速率保持恒定,所以体积生产力提高了。代谢建模研究表明,产黄青霉中的甲酸盐转运不需要自由能输入。在甲酸盐与葡萄糖的比例高于4.5 mol·mol⁻¹时,培养物中甲酸盐的残留浓度增加,这可能是由于甲酸盐氧化系统中的动力学限制。甲酸盐的积累与甲酸盐氧化与生物量和青霉素G生产之间的偶联丧失同时发生。这些结果表明,原则上,混合底物进料可用于提高诸如β-内酰胺等同化产物碳源的产量。