Schubert Mario, Poon David K Y, Wicki Jacqueline, Tarling Chris A, Kwan Emily M, Nielsen Jens E, Withers Stephen G, McIntosh Lawrence P
Department of Biochemistry and Molecular Biology, The Michael Smith Laboratory, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z3.
Biochemistry. 2007 Jun 26;46(25):7383-95. doi: 10.1021/bi700249m. Epub 2007 Jun 5.
We have characterized by NMR spectroscopy the three active site (His80, His85, and His205) and two non-active site (His107 and His114) histidines in the 34 kDa catalytic domain of Cellulomonas fimi xylanase Cex in its apo, noncovalently aza-sugar-inhibited, and trapped glycosyl-enzyme intermediate states. Due to protection from hydrogen exchange, the level of which increased upon inhibition, the labile 1Hdelta1 and 1H epsilon1 atoms of four histidines (t1/2 approximately 0.1-300 s at 30 degrees C and pH approximately 7), as well as the nitrogen-bonded protons in the xylobio-imidazole and -isofagomine inhibitors, could be observed with chemical shifts between 10.2 and 17.6 ppm. The histidine pKa values and neutral tautomeric forms were determined from their pH-dependent 13C epsilon1-1H epsilon1 chemical shifts, combined with multiple-bond 1H delta2/epsilon1-15N delta1/epsilon2 scalar coupling patterns. Remarkably, these pKa values span more than 8 log units such that at the pH optimum of approximately 6 for Cex activity, His107 and His205 are positively charged (pKa > 10.4), His85 is neutral (pKa < 2.8), and both His80 (pKa = 7.9) and His114 (pKa = 8.1) are titrating between charged and neutral states. Furthermore, upon formation of the glycosyl-enzyme intermediate, the pKa value of His80 drops from 7.9 to <2.8, becoming neutral and accepting a hydrogen bond from an exocyclic oxygen of the bound sugar moiety. Changes in the pH-dependent activity of Cex due to mutation of His80 to an alanine confirm the importance of this interaction. The diverse ionization behaviors of the histidine residues are discussed in terms of their structural and functional roles in this model glycoside hydrolase.
我们利用核磁共振光谱对纤维单胞菌木聚糖酶Cex的34 kDa催化结构域中的三个活性位点(His80、His85和His205)以及两个非活性位点(His107和His114)的组氨酸进行了表征,该结构域处于脱辅基、非共价氮杂糖抑制和捕获的糖基酶中间体状态。由于抑制作用后氢交换保护增强,四个组氨酸不稳定的1Hδ1和1Hε1原子(30℃和pH约为7时t1/2约为0.1 - 300秒)以及木二糖 - 咪唑和异法戈明抑制剂中与氮键合的质子,可以在10.2至17.6 ppm的化学位移下观察到。组氨酸的pKa值和中性互变异构形式是根据其pH依赖性的13Cε1 - 1Hε1化学位移以及多键1Hδ2/ε1 - 15Nδ1/ε2标量耦合模式确定的。值得注意的是,这些pKa值跨度超过8个对数单位,使得在Cex活性的最佳pH约为6时,His107和His205带正电荷(pKa > 10.4),His85呈中性(pKa < 2.8),而His80(pKa = 7.9)和His114(pKa = 8.1)都在带电和中性状态之间滴定。此外,在形成糖基酶中间体时,His80的pKa值从7.9降至<2.8,变为中性并接受来自结合糖部分环外氧的氢键。His80突变为丙氨酸导致Cex的pH依赖性活性发生变化,证实了这种相互作用的重要性。本文根据组氨酸残基在这种模型糖苷水解酶中的结构和功能作用,讨论了它们多样的电离行为。