Tokarz Michal, Hakonen Bodil, Dommersnes Paul, Orwar Owe, Akerman Björn
Department of Chemistry and Bioscience, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.
Langmuir. 2007 Jul 3;23(14):7652-8. doi: 10.1021/la700336u. Epub 2007 Jun 5.
Lipid vesicles can be connected by membrane nanotubes to build networks with promising bioanalytical properties. Here we characterize electrophoretic transport in such membrane tubes, with a particular eye to how their soft-material nature influences the intratube migration. In the absence of field, the tube radius is 110 +/- 26 nm, and it remains in this range during electrophoresis even though the applied electric field causes a slight decrease in the tube radius (approximately 6-11%). The electrophoretic velocity of the membrane wall (labeled with quantum dots) varies linearly with the field strength. Intratube migration is studied with latex spheres of radii 15, 50, 100, and 250 nm. The largest particle size does not enter the tube at fields strengths lower than 1250 V/m because the energy cost for expanding the tube around the particles is too high. The smaller particles migrate with essentially the same velocity as the membrane at low fields. Above 250 V/cm, the 15 nm particles exhibit an upward deviation from linear behavior and in fact migrate faster than in free solution whereas the 100 nm particles deviate downward. We propose that these nonlinear effects arise because of lipid adsorption to the particles (dominating for 15 nm particles) and a pistonlike compression of the solvent in front of the particles (dominating for 100 nm). As expected from such complexities, existing theories for a sphere migrating in a rigid-wall cylinder cannot explain our velocity results in lipid nanotubes.
脂质囊泡可以通过膜纳米管连接起来,构建具有良好生物分析特性的网络。在此,我们对这类膜管中的电泳传输进行了表征,特别关注其软材料性质如何影响管内迁移。在无电场的情况下,管半径为110±26纳米,并且在电泳过程中它仍保持在这个范围内,尽管施加的电场会使管半径略有减小(约6 - 11%)。膜壁(用量子点标记)的电泳速度随场强呈线性变化。我们用半径为15、50、100和250纳米的乳胶球研究了管内迁移。在电场强度低于1250伏/米时,最大粒径的粒子不会进入管内,因为在粒子周围扩张管子的能量成本过高。较小的粒子在低电场下迁移速度与膜基本相同。在250伏/厘米以上,15纳米的粒子表现出偏离线性行为的向上偏差,实际上迁移速度比在自由溶液中更快,而100纳米的粒子则向下偏离。我们认为这些非线性效应的产生是由于脂质吸附到粒子上(对15纳米的粒子起主导作用)以及粒子前方溶剂的活塞式压缩(对100纳米的粒子起主导作用)。正如从这些复杂性所预期的那样,现有的关于球体在刚性壁圆柱体内迁移的理论无法解释我们在脂质纳米管中的速度结果。