Suppr超能文献

Reprint of "Self-diffusion study of micelles in poly(oxyethylene)-polydimethylsiloxane diblock copolymer and poly(oxyethylene) alkyl ether systems" [J. Colloid Interface Sci. 300 (2006) 354-360].

作者信息

Aramaki Kenji, Olsson Ulf

机构信息

Graduate School of Environment and Information Sciences, Yokohama National University, Tokiwadai 79-7, Hodogaya, Yokohama 240-8501, Japan.

出版信息

J Colloid Interface Sci. 2007 Aug 1;312(1):52-8. doi: 10.1016/S0021-9797(07)00552-8.

Abstract

Self-diffusion constants of amphiphilic molecules in D(2)O solutions of mixed poly(oxyethylene)-polydimethylsiloxane diblock copolymer (POE-PDMS, Si(m)C(3)EO(n)) and poly(oxyethylene) dodecyl ether (C(12)EO(n)) were measured by pulsed-field-gradient NMR method. In the D(2)O/Si(25)C(3)EO(51.6)/C(12)EO(8) or D(2)O/Si(52)C(3)EO(51.6)/C(12)EO(8) systems, small and large micelles coexist in a wide range of Si(m)C(3)EO(51.6) fraction in total amphiphiles, whereas such a coexisting phenomenon does not take place in the D(2)O/Si(5.8)C(3)EO(51.6)/C(12)EO(8) system. The coexisting phenomenon also takes place in the D(2)O/Si(25)C(3)EO(51.6)/C(12)EO(5) system although the range of mixing fraction is limited. By obtaining each contribution of surfactant and copolymer molecules to the attenuation decay of the echo signal from the proton of the poly(oxyethylene) chain, we could evaluate the composition of the mixed micelles in the D(2)O/Si(25)C(3)EO(51.6)/C(12)EO(8) system. The copolymer content in the mixed micelle increases proportionally to the copolymer mole fraction in the aqueous solution. From the series of self-diffusion measurements, we can conclude that the miscibility of Si(m)C(3)EO(n) and C(12)EO(n) in aqueous micelles becomes poor and the coexisting phenomenon takes place when the PDMS chain becomes much longer than the dodecyl chain of C(12)EO(n) or the POE chain of C(12)EO(n) becomes long. Furthermore it is also revealed that very few silicone copolymer molecules can be incorporated in small surfactant micelles.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验