Strange Richard W, Yong Chin W, Smith William, Hasnain S Samar
Molecular Biophysics Group and Department of Computational Science and Engineering, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom.
Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10040-4. doi: 10.1073/pnas.0703857104. Epub 2007 Jun 4.
Mutations of the gene encoding Cu-Zn superoxide dismutase (SOD1) cause 20% of the familial cases of the progressive neurodegenerative disease ALS. A growing body of evidence suggests that in familial ALS (FALS) it is the molecular behavior of the metal-depleted SOD1 dimer that leads to a gain of toxic properties by misfolding, unfolding, and aggregation. Structural studies have so far provided static snapshots on the behavior of the wild-type enzyme and some of the FALS mutants. New approaches are required to map out the structural trajectories of the molecule. Here, using our 1.15-A resolution structure of fully metallated human SOD1 and highly parallelized molecular dynamics code on a high-performance capability computer, we have undertaken molecular dynamics calculations to 4,000 ps to reveal the first stages of misfolding caused by metal deletion. Large spatial and temporal fluctuations of the "electrostatic" and "Zn-binding" loops adjacent to the metal-binding sites are observed in the apo-enzyme relative to the fully metallated dimer. These early misfolding events expose the beta-barrels of the dimer to the external environment, allowing close interactions with adjacent molecules. Protection of the beta-edge of the protein can be partially restored by incorporating a single Zn molecule per dimer. These calculations reveal an essential step in the formation of the experimentally observed self-aggregations of metal-depleted FALS mutant SOD1. This result also has implications for the role of demetallated wild-type SOD1 in sporadic cases of ALS, for which the molecular cause still remains undiscovered.
编码铜锌超氧化物歧化酶(SOD1)的基因突变导致20%的家族性进行性神经退行性疾病肌萎缩侧索硬化症(ALS)。越来越多的证据表明,在家族性ALS(FALS)中,正是金属缺失的SOD1二聚体的分子行为通过错误折叠、去折叠和聚集导致了毒性特性的获得。迄今为止,结构研究提供了野生型酶和一些FALS突变体行为的静态快照。需要新的方法来描绘该分子的结构轨迹。在这里,利用我们解析度为1.15埃的完全金属化人SOD1结构以及高性能计算机上的高度并行化分子动力学代码,我们进行了长达4000皮秒的分子动力学计算,以揭示金属缺失引起的错误折叠的初始阶段。相对于完全金属化的二聚体,在脱辅基酶中观察到与金属结合位点相邻的“静电”和“锌结合”环存在较大的空间和时间波动。这些早期的错误折叠事件使二聚体的β桶暴露于外部环境,从而允许与相邻分子紧密相互作用。每个二聚体掺入单个锌分子可部分恢复对蛋白质β边缘的保护。这些计算揭示了实验观察到的金属缺失的FALS突变体SOD1自聚集形成过程中的一个关键步骤。这一结果对于去金属化的野生型SOD1在散发性ALS病例中的作用也具有启示意义,散发性ALS的分子病因仍未被发现。