Timucin Ahmet Can, Cinaroglu Suleyman Selim, Sezerman Osman Ugur, Timucin Emel
Department of Molecular Biology and Genetics, Acibadem MAA University, Istanbul, Turkey.
Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
Front Chem. 2021 Sep 3;9:716438. doi: 10.3389/fchem.2021.716438. eCollection 2021.
Metallation status of human Cu/Zn superoxide dismutase 1 (SOD1) plays a pivotal role in the pathogenesis of amyotrophic lateral sclerosis (ALS). All of the amino acids found in the bimetallic center have been associated with ALS except for two positions. H63 which forms the bridging imidazolate ion in the bimetallic center and K136 which is not directly involved in coordination but located in the bimetallic center were not reported to be mutated in any of the identified ALS cases. In this study, we investigated the structure and flexibility of five SOD1 variants by using classical molecular dynamics simulations. These variants include three substitutions on the non-ALS-linked positions; H63A, H63R, K136A and ALS-linked positions; G37R, H46R/H48D. We have generated four systems for each variant differing in metallation and presence of the intramolecular disulfide bond. Overall, a total of 24 different dimers including the wild-type were generated and simulated at two temperatures, 298 and 400 K. We have monitored backbone mobility, fluctuations and compactness of the dimer structures to assess whether the hypothetical mutations would behave similar to the ALS-linked variants. Results showed that particularly two mutants, H63R and K136A, drastically affected the dimer dynamics by increasing the fluctuations of the metal binding loops compared with the control mutations. Further, these variants resulted in demetallation of the dimers, highlighting probable ALS toxicity that could be elicited by the SOD1 variants of H63R and K136A. Overall, this study bridges two putative SOD1 positions in the metallic center and ALS, underlining the potential use of atomistic simulations for studying disease variants.
人铜锌超氧化物歧化酶1(SOD1)的金属化状态在肌萎缩侧索硬化症(ALS)的发病机制中起关键作用。除了两个位置外,在双金属中心发现的所有氨基酸都与ALS有关。在双金属中心形成桥连咪唑离子的H63和不直接参与配位但位于双金属中心的K136,在任何已鉴定的ALS病例中均未报道发生突变。在本研究中,我们通过经典分子动力学模拟研究了五种SOD1变体的结构和灵活性。这些变体包括在与ALS无关的位置上的三个取代;H63A、H63R、K136A以及与ALS相关的位置;G37R、H46R/H48D。我们为每个变体生成了四个系统,这些系统在金属化和分子内二硫键的存在方面有所不同。总体而言,总共生成了包括野生型在内的24种不同的二聚体,并在298和400 K两个温度下进行了模拟。我们监测了二聚体结构的主链流动性、波动和紧凑性,以评估假设的突变是否会表现得与与ALS相关的变体相似。结果表明,特别是两个突变体H63R和K136A,与对照突变相比,通过增加金属结合环的波动,极大地影响了二聚体动力学。此外,这些变体导致二聚体脱金属,突出了H63R和K136A的SOD1变体可能引发的ALS毒性。总体而言,本研究在金属中心的两个假定SOD1位置与ALS之间建立了联系,强调了原子模拟在研究疾病变体方面的潜在用途。