Ramamoorthy Sripriya, Deo Niranjan V, Grosh Karl
Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
J Acoust Soc Am. 2007 May;121(5 Pt1):2758-73. doi: 10.1121/1.2713725.
A linear, physiologically based, three-dimensional finite element model of the cochlea is developed. The model integrates the electrical, acoustic, and mechanical elements of the cochlea. In particular, the model includes interactions between structures in the organ of Corti (OoC), piezoelectric relations for outer hair cell (OHC) motility, hair bundle (HB) conductance that changes with HB deflection, current flow in the cross section and along the different scalae, and the feed-forward effect. The parameters in the model are based on guinea-pig data as far as possible. The model is vetted using a variety of experimental data on basilar membrane motion and data on voltages and currents in the OoC. Model predictions compare well, qualitatively and quantitatively, with experimental data on basilar membrane frequency response, impulse response, frequency glides, and scala tympani voltage. The close match of the model predictions with experimental data demonstrates the validity of the model for simulating cochlear response to acoustic input and for testing hypotheses of cochlear function. Analysis of the model and its results indicates that OHC somatic motility is capable of powering active amplification in the cochlea. At the same time, the model supports a possible synergistic role for HB motility in cochlear amplification.
开发了一种基于生理的线性三维耳蜗有限元模型。该模型整合了耳蜗的电、声和机械元件。特别地,该模型包括柯蒂氏器(OoC)中各结构之间的相互作用、外毛细胞(OHC)运动的压电关系、随毛束(HB)偏转而变化的毛束电导、横截面和沿不同蜗管的电流流动以及前馈效应。模型中的参数尽可能基于豚鼠数据。使用关于基底膜运动的各种实验数据以及OoC中的电压和电流数据对模型进行了验证。模型预测在定性和定量方面与关于基底膜频率响应、脉冲响应、频率滑动和鼓阶电压的实验数据进行了很好的比较。模型预测与实验数据的紧密匹配证明了该模型在模拟耳蜗对声学输入的响应以及测试耳蜗功能假设方面的有效性。对模型及其结果的分析表明,OHC体细胞运动能够为耳蜗中的主动放大提供动力。同时,该模型支持HB运动在耳蜗放大中可能具有协同作用。