Suppr超能文献

小鼠耳蜗顶端行波传播和放大的相互作用。

Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea.

机构信息

Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, California.

Caruso Department of Otolaryngology-Head and Neck Surgery, University of Southern California, Los Angeles, California; Department of Physics and Astronomy, University of Southern California, Los Angeles, California.

出版信息

Biophys J. 2022 Aug 2;121(15):2940-2951. doi: 10.1016/j.bpj.2022.06.029. Epub 2022 Jun 30.

Abstract

Sounds entering the mammalian ear produce waves that travel from the base to the apex of the cochlea. An electromechanical active process amplifies traveling wave motions and enables sound processing over a broad range of frequencies and intensities. The cochlear amplifier requires combining the global traveling wave with the local cellular processes that change along the length of the cochlea given the gradual changes in hair cell and supporting cell anatomy and physiology. Thus, we measured basilar membrane (BM) traveling waves in vivo along the apical turn of the mouse cochlea using volumetric optical coherence tomography and vibrometry. We found that there was a gradual reduction in key features of the active process toward the apex. For example, the gain decreased from 23 to 19 dB and tuning sharpness decreased from 2.5 to 1.4. Furthermore, we measured the frequency and intensity dependence of traveling wave properties. The phase velocity was larger than the group velocity, and both quantities gradually decrease from the base to the apex denoting a strong dispersion characteristic near the helicotrema. Moreover, we found that the spatial wavelength along the BM was highly level dependent in vivo, such that increasing the sound intensity from 30 to 90 dB sound pressure level increased the wavelength from 504 to 874 μm, a factor of 1.73. We hypothesize that this wavelength variation with sound intensity gives rise to an increase of the fluid-loaded mass on the BM and tunes its local resonance frequency. Together, these data demonstrate a strong interplay between the traveling wave propagation and amplification along the length of the cochlea.

摘要

进入哺乳动物耳朵的声音产生的波从基底向耳蜗的顶点传播。机电主动过程放大了传播波的运动,并使声音处理能够在广泛的频率和强度范围内进行。耳蜗放大器需要将全局传播波与局部细胞过程相结合,这些过程沿着耳蜗的长度变化,考虑到毛细胞和支持细胞解剖结构和生理学的逐渐变化。因此,我们使用体积光学相干断层扫描和振动测量法,在体内测量了小鼠耳蜗顶回的基底膜(BM)传播波。我们发现,主动过程的关键特征逐渐向顶点减少。例如,增益从 23dB 降低到 19dB,调谐锐度从 2.5 降低到 1.4。此外,我们还测量了传播波特性的频率和强度依赖性。相速度大于群速度,这两个数量从基底到顶点逐渐减小,在螺旋体附近表示出很强的色散特性。此外,我们发现,在体内,BM 上的空间波长与强度高度相关,因此,将声音强度从 30dB 增加到 90dB 声压级会使波长从 504μm 增加到 874μm,增加了 1.73 倍。我们假设这种随声音强度变化的波长变化会导致 BM 上的流体负载质量增加,并调整其局部共振频率。总之,这些数据表明,在耳蜗的长度上,传播波的传播和放大之间存在强烈的相互作用。

相似文献

1
Interplay between traveling wave propagation and amplification at the apex of the mouse cochlea.
Biophys J. 2022 Aug 2;121(15):2940-2951. doi: 10.1016/j.bpj.2022.06.029. Epub 2022 Jun 30.
2
Noninvasive in vivo imaging reveals differences between tectorial membrane and basilar membrane traveling waves in the mouse cochlea.
Proc Natl Acad Sci U S A. 2015 Mar 10;112(10):3128-33. doi: 10.1073/pnas.1500038112. Epub 2015 Mar 3.
3
The physics of hearing: fluid mechanics and the active process of the inner ear.
Rep Prog Phys. 2014 Jul;77(7):076601. doi: 10.1088/0034-4885/77/7/076601. Epub 2014 Jul 9.
4
Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17101-6. doi: 10.1073/pnas.262663699. Epub 2002 Dec 2.
5
Mechanical tuning and amplification within the apex of the guinea pig cochlea.
J Physiol. 2017 Jul 1;595(13):4549-4561. doi: 10.1113/JP273881. Epub 2017 May 21.
6
An outer hair cell-powered global hydromechanical mechanism for cochlear amplification.
Hear Res. 2022 Sep 15;423:108407. doi: 10.1016/j.heares.2021.108407. Epub 2021 Dec 1.
7
Recent developments in cochlear physiology.
Ear Hear. 1986 Aug;7(4):233-9. doi: 10.1097/00003446-198608000-00003.
10
Longitudinally propagating traveling waves of the mammalian tectorial membrane.
Proc Natl Acad Sci U S A. 2007 Oct 16;104(42):16510-5. doi: 10.1073/pnas.0703665104. Epub 2007 Oct 9.

引用本文的文献

2
Imaging the human cochlea using 1.3-m and 1.7-m optical coherence tomography.
J Biomed Opt. 2025 Apr;30(4):046007. doi: 10.1117/1.JBO.30.4.046007. Epub 2025 Apr 17.
3
The Medial Olivocochlear Efferent Pathway Potentiates Cochlear Amplification in Response to Hearing Loss.
J Neurosci. 2025 Apr 9;45(15):e2103242025. doi: 10.1523/JNEUROSCI.2103-24.2025.
4
The Reduced Cortilymph Flow Path in the Short-Wave Region Allows Outer Hair Cells to Produce Focused Traveling-Wave Amplification.
J Assoc Res Otolaryngol. 2025 Feb;26(1):49-61. doi: 10.1007/s10162-025-00976-3. Epub 2025 Feb 7.
6
Rate-dependent cochlear outer hair cell force generation: Models and parameter estimation.
Biophys J. 2024 Oct 1;123(19):3421-3432. doi: 10.1016/j.bpj.2024.08.007. Epub 2024 Aug 14.
7
Local cochlear mechanical responses revealed through outer hair cell receptor potential measurements.
Biophys J. 2024 Sep 17;123(18):3163-3175. doi: 10.1016/j.bpj.2024.07.015. Epub 2024 Jul 15.
8
Intracochlear overdrive: Characterizing nonlinear wave amplification in the mouse apex.
J Acoust Soc Am. 2023 Nov 1;154(5):3414-3428. doi: 10.1121/10.0022446.
9
Otoacoustic emissions reveal the micromechanical role of organ-of-Corti cytoarchitecture in cochlear amplification.
Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2305921120. doi: 10.1073/pnas.2305921120. Epub 2023 Oct 5.
10
On the Tonotopy of the Low-Frequency Region of the Cochlea.
J Neurosci. 2023 Jul 12;43(28):5172-5179. doi: 10.1523/JNEUROSCI.0249-23.2023. Epub 2023 May 24.

本文引用的文献

2
Cochlear supporting cells require GAS2 for cytoskeletal architecture and hearing.
Dev Cell. 2021 May 17;56(10):1526-1540.e7. doi: 10.1016/j.devcel.2021.04.017. Epub 2021 May 7.
3
The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing.
Sci Rep. 2020 Nov 25;10(1):20528. doi: 10.1038/s41598-020-77042-w.
4
A role for tectorial membrane mechanics in activating the cochlear amplifier.
Sci Rep. 2020 Oct 19;10(1):17620. doi: 10.1038/s41598-020-73873-9.
5
Noise and sensitivity in optical coherence tomography based vibrometry.
Opt Express. 2019 Nov 11;27(23):33333-33350. doi: 10.1364/OE.27.033333.
6
Unified cochlear model for low- and high-frequency mammalian hearing.
Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):13983-13988. doi: 10.1073/pnas.1900695116. Epub 2019 Jun 20.
7
Comparing the direct normal form and multiple scales methods through frequency detuning.
Nonlinear Dyn. 2018;94(4):2919-2935. doi: 10.1007/s11071-018-4534-1. Epub 2018 Sep 14.
10
Using Cochlear Microphonic Potentials to Localize Peripheral Hearing Loss.
Front Neurosci. 2017 Apr 4;11:169. doi: 10.3389/fnins.2017.00169. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验