Suppr超能文献

损伤性疲劳负荷刺激大鼠尺骨骨形成部位的骨膜血管增多。

Damaging fatigue loading stimulates increases in periosteal vascularity at sites of bone formation in the rat ulna.

作者信息

Matsuzaki Hironori, Wohl Gregory R, Novack Deborah V, Lynch Jennifer A, Silva Matthew J

机构信息

Orthopedic Research Laboratory, Department of Orthopedic Surgery, Washington University, 1 Barnes-Jewish Hospital Plaza, Suite 11300 WP, St. Louis, MO 63110, USA.

出版信息

Calcif Tissue Int. 2007 Jun;80(6):391-9. doi: 10.1007/s00223-007-9031-3. Epub 2007 Jun 6.

Abstract

Bone formation in a variety of contexts depends on angiogenesis; however, there are few reports of the vascular response to osteogenic skeletal loading. We used the rat forelimb compression model to characterize vascular changes after fatigue loading. The right forelimbs of 72 adult rats were loaded cyclically in vivo to one of four displacement levels, to produce four discrete levels of ulnar damage. Rats were killed 3-14 days after loading, and their vasculature was perfused with silicone rubber. Transverse histological sections were cut along the ulnar diaphysis. We quantified vessel number, average vessel area, total vessel area, and bone area. On day 3, we observed a dramatic periosteal expansion near the ulnar midshaft, with significant increases in periosteal vascularity; total vessel area was increased 250-450% (P < 0.001). Vascularity remained elevated on days 7 and 14. Vessel number and average vessel area were not correlated (P = 0.09) and contributed independently to total vascular increases. Bone area was not increased on day 3 but on days 7 and 14 was increased significantly in all displacement groups (P < 0.01) due to periosteal woven bone formation. Vascular and bone changes depended on longitudinal location (P < 0.001), with peak increases 2 mm distal to the midshaft. Vascular and bone changes also depended on displacement level (P < 0.005), with greater increases at higher levels of fatigue displacement. We conclude that skeletal fatigue loading induces a rapid increase in periosteal vascularity, followed by an increase in bone area. The angiogenic-osteogenic response is spatially coordinated and scaled to the level of the mechanical stimulus.

摘要

在多种情况下,骨形成依赖于血管生成;然而,关于血管对成骨性骨骼负荷的反应的报道却很少。我们使用大鼠前肢压缩模型来表征疲劳负荷后的血管变化。72只成年大鼠的右前肢在体内循环加载到四个位移水平之一,以产生四个离散水平的尺骨损伤。加载后3 - 14天处死大鼠,并用硅橡胶灌注其脉管系统。沿尺骨干中段切取横向组织学切片。我们对血管数量、平均血管面积、总血管面积和骨面积进行了量化。在第3天,我们观察到尺骨中轴附近骨膜显著扩张,骨膜血管显著增加;总血管面积增加了250 - 450%(P < 0.001)。在第7天和第14天,血管化程度仍然升高。血管数量和平均血管面积无相关性(P = 0.09),且对总血管增加有独立贡献。骨面积在第3天没有增加,但在第7天和第14天,由于骨膜编织骨形成,所有位移组均显著增加(P < 0.01)。血管和骨的变化取决于纵向位置(P < 0.001),在中轴远端2 mm处增加最为明显。血管和骨的变化也取决于位移水平(P < 0.005),在更高水平的疲劳位移下增加幅度更大。我们得出结论,骨骼疲劳负荷诱导骨膜血管迅速增加,随后骨面积增加。血管生成 - 成骨反应在空间上是协调的,并与机械刺激水平成比例。

相似文献

1
Damaging fatigue loading stimulates increases in periosteal vascularity at sites of bone formation in the rat ulna.
Calcif Tissue Int. 2007 Jun;80(6):391-9. doi: 10.1007/s00223-007-9031-3. Epub 2007 Jun 6.
10

引用本文的文献

1
Toward a clear relationship between mechanical signals and bone adaptation.
Mechanobiol Med. 2025 Feb 1;3(1):100115. doi: 10.1016/j.mbm.2025.100115. eCollection 2025 Mar.
2
Does wing use and disuse cause behavioural and musculoskeletal changes in domestic fowl ()?
R Soc Open Sci. 2023 Jan 25;10(1):220809. doi: 10.1098/rsos.220809. eCollection 2023 Jan.
3
Effects of Exercise or Mechanical Stimulation on Bone Development and Bone Repair.
Stem Cells Int. 2022 Sep 28;2022:5372229. doi: 10.1155/2022/5372229. eCollection 2022.
4
VEGFA from osteoblasts is not required for lamellar bone formation following tibial loading.
Bone. 2022 Oct;163:116502. doi: 10.1016/j.bone.2022.116502. Epub 2022 Jul 21.
6
Physical Activity and Bone Vascularization: A Way to Explore in Bone Repair Context?
Life (Basel). 2021 Aug 2;11(8):783. doi: 10.3390/life11080783.
9
The Effect of Exercise on the Prevention of Osteoporosis and Bone Angiogenesis.
Biomed Res Int. 2019 Apr 18;2019:8171897. doi: 10.1155/2019/8171897. eCollection 2019.
10
Skeletal vascular perfusion is altered in chronic kidney disease.
Bone Rep. 2018 May 4;8:215-220. doi: 10.1016/j.bonr.2018.05.001. eCollection 2018 Jun.

本文引用的文献

1
Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
Bone. 2007 Apr;40(4):948-56. doi: 10.1016/j.bone.2006.11.012. Epub 2007 Jan 17.
3
Use of the rat forelimb compression model to create discrete levels of bone damage in vivo.
J Biomech. 2007;40(2):317-24. doi: 10.1016/j.jbiomech.2006.01.005. Epub 2006 Mar 7.
4
Vascular biology and the skeleton.
J Bone Miner Res. 2006 Feb;21(2):183-92. doi: 10.1359/JBMR.050917. Epub 2005 Oct 3.
5
Imaging bone microdamage in vivo with positron emission tomography.
Bone. 2005 Dec;37(6):819-24. doi: 10.1016/j.bone.2005.06.022. Epub 2005 Oct 19.
6
Angiogenesis is required for successful bone induction during distraction osteogenesis.
J Bone Miner Res. 2005 Jul;20(7):1114-24. doi: 10.1359/JBMR.050301. Epub 2005 Mar 7.
7
Increase of both angiogenesis and bone mass in response to exercise depends on VEGF.
J Bone Miner Res. 2004 Sep;19(9):1471-80. doi: 10.1359/JBMR.040517. Epub 2004 Jun 2.
9
Analyzing bone, blood vessels, and biomaterials with microcomputed tomography.
IEEE Eng Med Biol Mag. 2003 Sep-Oct;22(5):77-83. doi: 10.1109/memb.2003.1256276.
10
Expression of angiogenic factors during distraction osteogenesis.
Bone. 2003 Dec;33(6):889-98. doi: 10.1016/j.bone.2003.06.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验