Suppr超能文献

用于脂质壳超声微泡造影剂的麦克斯韦流变学模型。

Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents.

作者信息

Doinikov Alexander A, Dayton Paul A

机构信息

Institute of Nuclear Problems, Belarus State University, 11 Bobruiskaya Street, Minsk 220050, Belarus.

出版信息

J Acoust Soc Am. 2007 Jun;121(6):3331-40. doi: 10.1121/1.2722233.

Abstract

The present paper proposes a model that describes the encapsulation of microbubble contrast agents by the linear Maxwell constitutive equation. The model also incorporates the translational motion of contrast agent microbubbles and takes into account radiation losses due to the compressibility of the surrounding liquid. To establish physical features of the proposed model, comparative analysis is performed between this model and two existing models, one of which treats the encapsulation as a viscoelastic solid following the Kelvin-Voigt constitutive equation and the other assumes that the encapsulating layer behaves as a viscous Newtonian fluid. Resonance frequencies, damping coefficients, and scattering cross sections for the three shell models are compared in the regime of linear oscillation. Translational displacements predicted by the three shell models are examined by numerically calculating the general, nonlinearized equations of motion for weakly nonlinear excitation. Analogous results for free bubbles are also presented as a basis to which calculations made for encapsulated bubbles can be related. It is shown that the Maxwell shell model possesses specific physical features that are unavailable in the two other models.

摘要

本文提出了一个通过线性麦克斯韦本构方程描述微泡造影剂包封的模型。该模型还纳入了造影剂微泡的平移运动,并考虑了由于周围液体的可压缩性导致的辐射损失。为了确定所提出模型的物理特性,对该模型与两个现有模型进行了对比分析,其中一个模型将包封视为遵循开尔文 - 沃伊特本构方程的粘弹性固体,另一个模型假设包封层表现为粘性牛顿流体。在线性振荡范围内比较了三种壳模型的共振频率、阻尼系数和散射截面。通过数值计算弱非线性激励的一般非线性化运动方程,研究了三种壳模型预测的平移位移。还给出了自由气泡的类似结果,作为与包封气泡计算相关的基础。结果表明,麦克斯韦壳模型具有其他两个模型所没有的特定物理特性。

相似文献

1
Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents.
J Acoust Soc Am. 2007 Jun;121(6):3331-40. doi: 10.1121/1.2722233.
2
Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
Ultrasonics. 2009 Feb;49(2):269-75. doi: 10.1016/j.ultras.2008.09.007. Epub 2008 Sep 30.
3
Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
Ultrasonics. 2009 Feb;49(2):263-8. doi: 10.1016/j.ultras.2008.09.006. Epub 2008 Sep 30.
6
A Newtonian rheological model for the interface of microbubble contrast agents.
Ultrasound Med Biol. 2003 Dec;29(12):1749-57. doi: 10.1016/s0301-5629(03)01051-2.
7
Modeling non-spherical oscillations and stability of acoustically driven shelled microbubbles.
J Acoust Soc Am. 2012 Jun;131(6):4349-57. doi: 10.1121/1.4707479.
9
Scaling of the viscoelastic shell properties of phospholipid encapsulated microbubbles with ultrasound frequency.
Ultrasonics. 2014 Aug;54(6):1419-24. doi: 10.1016/j.ultras.2014.03.014. Epub 2014 Apr 3.
10
A model for the dynamics of ultrasound contrast agents in vivo.
J Acoust Soc Am. 2010 Sep;128(3):1511-21. doi: 10.1121/1.3409476.

引用本文的文献

1
The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery.
Biomicrofluidics. 2023 Apr 10;17(2):021502. doi: 10.1063/5.0130769. eCollection 2023 Mar.
2
An iterative fullwave simulation approach to multiple scattering in media with randomly distributed microbubbles.
Phys Med Biol. 2017 May 21;62(10):4202-4217. doi: 10.1088/1361-6560/aa6523. Epub 2017 Mar 7.
4
Determination of the interfacial rheological properties of a poly(DL-lactic acid)-encapsulated contrast agent using in vitro attenuation and scattering.
Ultrasound Med Biol. 2013 Jul;39(7):1277-91. doi: 10.1016/j.ultrasmedbio.2013.02.004. Epub 2013 May 1.
5
Bursting bubbles and bilayers.
Theranostics. 2012;2(12):1140-59. doi: 10.7150/thno.4305. Epub 2012 Dec 11.
6
Excitation threshold for subharmonic generation from contrast microbubbles.
J Acoust Soc Am. 2011 Nov;130(5):3137-47. doi: 10.1121/1.3641455.
7
Acoustic responses of monodisperse lipid-encapsulated microbubble contrast agents produced by flow focusing.
Bubble Sci Eng Technol. 2010 Dec;2(2):33-40. doi: 10.1179/175889610x12779105661532.

本文引用的文献

1
Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field.
J Acoust Soc Am. 2006 Aug;120(2):661-669. doi: 10.1121/1.2215228.
2
Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1494-509. doi: 10.1109/58.883539.
3
Optical and acoustical observations of the effects of ultrasound on contrast agents.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(1):220-32. doi: 10.1109/58.741536.
4
Lateral phase separation in lipid-coated microbubbles.
Langmuir. 2006 Apr 25;22(9):4291-7. doi: 10.1021/la052841v.
6
Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.
Colloids Surf B Biointerfaces. 2004 Jun 1;35(3-4):209-23. doi: 10.1016/j.colsurfb.2004.03.007.
7
A Newtonian rheological model for the interface of microbubble contrast agents.
Ultrasound Med Biol. 2003 Dec;29(12):1749-57. doi: 10.1016/s0301-5629(03)01051-2.
8
The magnitude of radiation force on ultrasound contrast agents.
J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2183-92. doi: 10.1121/1.1509428.
9
Dynamics of therapeutic ultrasound contrast agents.
Ultrasound Med Biol. 2002 Jun;28(6):805-16. doi: 10.1016/s0301-5629(02)00522-7.
10
Oscillations of polymeric microbubbles: effect of the encapsulating shell.
J Acoust Soc Am. 2000 Apr;107(4):2272-80. doi: 10.1121/1.428557.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验