Suppr超能文献

超声场中封装气泡的时空动力学

Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field.

作者信息

Doinikov Alexander A, Dayton Paul A

机构信息

Institute of Nuclear Problems, Belarus State University, 11 Bobruiskaya Street, Minsk 220050, Belarus.

出版信息

J Acoust Soc Am. 2006 Aug;120(2):661-669. doi: 10.1121/1.2215228.

Abstract

Coupled equations describing the radial and translational dynamics of an encapsulated gas bubble in an ultrasound field are derived by using the Lagrangian formalism. The equations generalize Church's theory by allowing for the translation motion of the bubble and radiation losses due to the compressibility of the surrounding liquid. The expression given by Church for the inner bubble radius corresponding to the unstrained state of the bubble shell is also refined, assuming that the shell can be of arbitrary thickness and impermeable to gas. Comparative linear analysis of the radial equation is carried out relative to Church's theory. It is shown that there are substantial departures from predictions of Church's theory. The proposed model is applied to evaluate radiation forces exerted on encapsulated bubbles and their translational displacements. It is shown that in the range of relatively high frequencies encapsulated bubbles are able to translate more efficiently than free bubbles of the equivalent size.

摘要

通过使用拉格朗日形式推导了描述超声场中封装气泡的径向和平动动力学的耦合方程。这些方程通过考虑气泡的平动以及周围液体可压缩性导致的辐射损耗,对丘奇理论进行了推广。假设气泡壳可以具有任意厚度且不透气,还对丘奇给出的对应于气泡壳无应变状态的内气泡半径表达式进行了细化。相对于丘奇理论对径向方程进行了比较线性分析。结果表明,与丘奇理论的预测存在显著偏差。所提出的模型用于评估施加在封装气泡上的辐射力及其平动位移。结果表明,在相对高频范围内,封装气泡比同等尺寸的自由气泡能够更有效地平动。

相似文献

1
Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field.
J Acoust Soc Am. 2006 Aug;120(2):661-669. doi: 10.1121/1.2215228.
2
Translational motion of two interacting bubbles in a strong acoustic field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026301. doi: 10.1103/PhysRevE.64.026301. Epub 2001 Jul 16.
3
Radial oscillation and translational motion of a gas bubble in a micro-cavity.
Ultrason Sonochem. 2022 Mar;84:105957. doi: 10.1016/j.ultsonch.2022.105957. Epub 2022 Feb 18.
4
Theoretical model for coupled radial and translational motion of two bubbles at arbitrary separation distances.
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Oct;92(4):043001. doi: 10.1103/PhysRevE.92.043001. Epub 2015 Oct 5.
5
A new pressure formulation for gas-compressibility dampening in bubble dynamics models.
Ultrason Sonochem. 2016 Sep;32:247-257. doi: 10.1016/j.ultsonch.2016.03.013. Epub 2016 Mar 11.
7
Dynamics of bubble-bubble interactions experiencing viscoelastic drag.
Phys Rev E. 2019 Feb;99(2-1):023109. doi: 10.1103/PhysRevE.99.023109.

引用本文的文献

1
Translational motions and radial oscillations of a polymer-coated microbubble in the focal cross-section of focused acoustic vortex.
Ultrason Sonochem. 2025 Aug;119:107405. doi: 10.1016/j.ultsonch.2025.107405. Epub 2025 May 29.
3
The effect of size range on ultrasound-induced translations in microbubble populations.
J Acoust Soc Am. 2020 May;147(5):3236. doi: 10.1121/10.0001172.
4
Bursting bubbles and bilayers.
Theranostics. 2012;2(12):1140-59. doi: 10.7150/thno.4305. Epub 2012 Dec 11.
5
Contrast-enhanced and targeted ultrasound.
World J Gastroenterol. 2011 Jan 7;17(1):28-41. doi: 10.3748/wjg.v17.i1.28.
6
Ultrasound contrast microbubbles in imaging and therapy: physical principles and engineering.
Phys Med Biol. 2009 Mar 21;54(6):R27-57. doi: 10.1088/0031-9155/54/6/R01. Epub 2009 Feb 19.
7
Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles.
Ultrasonics. 2009 Feb;49(2):269-75. doi: 10.1016/j.ultras.2008.09.007. Epub 2008 Sep 30.
8
Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations.
Ultrasonics. 2009 Feb;49(2):263-8. doi: 10.1016/j.ultras.2008.09.006. Epub 2008 Sep 30.
9
Modeling of the acoustic response from contrast agent microbubbles near a rigid wall.
Ultrasonics. 2009 Feb;49(2):195-201. doi: 10.1016/j.ultras.2008.07.017. Epub 2008 Aug 9.
10
Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents.
J Acoust Soc Am. 2007 Jun;121(6):3331-40. doi: 10.1121/1.2722233.

本文引用的文献

1
Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size.
IEEE Trans Ultrason Ferroelectr Freq Control. 2000;47(6):1494-509. doi: 10.1109/58.883539.
2
Modifications of the equation for gas bubble dynamics in a soft elastic medium.
J Acoust Soc Am. 2005 Oct;118(4):2173-81. doi: 10.1121/1.2010348.
3
Nonlinear dynamics of a gas bubble in an incompressible elastic medium.
J Acoust Soc Am. 2004 Feb;115(2):581-8. doi: 10.1121/1.1621858.
4
The magnitude of radiation force on ultrasound contrast agents.
J Acoust Soc Am. 2002 Nov;112(5 Pt 1):2183-92. doi: 10.1121/1.1509428.
5
Translational motion of two interacting bubbles in a strong acoustic field.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026301. doi: 10.1103/PhysRevE.64.026301. Epub 2001 Jul 16.
6
Acoustic modeling of shell-encapsulated gas bubbles.
Ultrasound Med Biol. 1998 May;24(4):523-33. doi: 10.1016/s0301-5629(98)00009-x.
7
Ultrasound scattering properties of Albunex microspheres.
Ultrasonics. 1993;31(3):175-81. doi: 10.1016/0041-624x(93)90004-j.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验