Dehlinger Dietrich A, Sullivan Benjamin D, Esener Sadik, Heller Michael J
Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA 92093-0412, USA.
Small. 2007 Jul;3(7):1237-44. doi: 10.1002/smll.200600673.
Multilayered structures composed of biomolecule-derivatized nanoparticles can be fabricated by electric-field-directed self-assembly. A microelectrode-array device facilitates the rapid parallel electrophoretic transport and binding of biotin and streptavidin fluorescent nanoparticles to specific sites on the microarray. Control of the current, voltage, and activation time of each of the 400-microarray electrodes allows a combinatorial approach to optimize nanoparticle binding. Under optimal conditions, nanoparticle layers form within 15 s of microelectrode activation, and the directed assembly of more than 50 alternate layers of nanoparticles is complete within an hour. The final multilayered structures are removed from the support by a relatively simple lift-off process. The electric-field process allows the parallel patterned assembly of multilayer structures using extremely low concentrations of nanoparticles and produces minimal nonspecific binding to unactivated sites. These results are significant for the development of rapid, maskless nanofabrication and hierarchical integration of biomolecular-derivatized nanocomponents into higher-order materials and devices.
由生物分子衍生的纳米颗粒组成的多层结构可通过电场定向自组装来制造。微电极阵列装置有助于生物素和链霉亲和素荧光纳米颗粒快速并行电泳运输并结合到微阵列上的特定位置。对400个微阵列电极中每个电极的电流、电压和激活时间进行控制,可采用组合方法优化纳米颗粒结合。在最佳条件下,微电极激活后15秒内形成纳米颗粒层,一小时内可完成50多层纳米颗粒交替层的定向组装。通过相对简单的剥离工艺将最终的多层结构从支撑体上移除。电场工艺允许使用极低浓度的纳米颗粒对多层结构进行并行图案化组装,并使与未激活位点的非特异性结合降至最低。这些结果对于快速、无掩膜纳米制造以及将生物分子衍生的纳米组件分层集成到高阶材料和器件中具有重要意义。