Seifert Markus H J, Kraus Jürgen, Kramer Bernd
4SC AG, Am Klopferspitz 19A, D-82152 Planegg-Martinsried, Germany.
Curr Opin Drug Discov Devel. 2007 May;10(3):298-307.
Virtual high-throughput screening (vHTS) is an efficient and widely applicable method used to identify initial hit compounds for pharmaceutical research. Despite its widespread use, several aspects of protein structure-based vHTS can still be optimized, particularly its accuracy and speed in generating results. Recent developments that address these issues include machine learning and implicit solvation methods. Various machine learning methods are available to improve vHTS accuracy, for example, target-specific optimization of scoring functions, the integration of essential protein-ligand interactions, and the application of negative training data. Implicit solvation methods are exemplified by the molecular mechanics Poisson-Boltzmann solvent accessible surface area approach. Furthermore, grid computing and intelligent database screening approaches are used to improve the speed of vHTS.
虚拟高通量筛选(vHTS)是一种高效且广泛应用的方法,用于识别药物研究中的初始活性化合物。尽管其应用广泛,但基于蛋白质结构的vHTS的几个方面仍可优化,特别是在生成结果方面的准确性和速度。解决这些问题的最新进展包括机器学习和隐式溶剂化方法。有多种机器学习方法可用于提高vHTS的准确性,例如,对评分函数进行目标特异性优化、整合关键的蛋白质-配体相互作用以及应用负训练数据。隐式溶剂化方法以分子力学泊松-玻尔兹曼溶剂可及表面积方法为例。此外,网格计算和智能数据库筛选方法用于提高vHTS的速度。